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Abstract
Many online marketplaces personalize prices based on con-
sumer attributes. Since these prices are private, consumers
will not realize if they spend more on a good than the low-
est possible price, and cannot easily take action to get better
prices. In this paper we introduce a system that takes advan-
tage of personalized pricing so consumers can profit while
improving fairness. Our system matches consumers for trad-
ing; the lower-paying consumer buys the good for the higher-
paying consumer for some fee. We explore various modeling
choices and fairness targets to determine which schema will
leave consumers best off, while also earning revenue for the
system itself. We show that when consumers individually ne-
gotiate the transaction price, they are able to achieve the most
fair outcomes. Conversely, when transaction prices are cen-
trally set, consumers are often unwilling to transact. Minimiz-
ing the average price paid by an individual or group is most
profitable for the system, while achieving a 67% reduction in
prices. We see that a high dispersion (or range) of original
prices is necessary for our system to be viable. Higher disper-
sion can actually lead to increased consumer welfare, and act
as a check against extreme personalization. Our results pro-
vide theoretical evidence that such a system could improve
fairness for consumers while sustaining itself financially.

1 Introduction
Suppose you and your friend are interested in buying the
same pair of shoes online from the same website. You see the
shoes listed for $60, while your friend sees $50 due to behav-
ioral profiling (Karan, Balepur, and Sundaram 2023; Hannak
et al. 2014). If you knew about this price discrepancy, you
could ask your friend to buy the shoes for you, paying them
back, maybe throwing in a few extra dollars so you both
benefit. Many online marketplaces employ elements of per-
sonalized pricing — surveys indicate that many companies
intend to use AI or automated systems to personalize prices
(Hogan 2018). While many consumers understand that they
may see personalized prices, it is difficult to take money-
saving actions without knowing what other consumers are
paying. As differential pricing can vary with protected at-
tributes, facilitating this type of exchange can help reduce
disparate pricing outcomes across protected classes. This ex-
change, however, must be designed to simultaneously im-
prove fairness and be financially viable — this can greatly
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depend on price dispersion in the market. In this work we
address challenges regarding design of this platform.

Prior work on decreasing disparity across groups suggests
fairer pricing algorithms (Xu et al. 2022), or advises users
to change their behavior to get better pricing (Kusner et al.
2017). Other work has looked at the benefit of trading data,
primarily for the purpose of improving downstream mod-
els (Fernandez, Subramaniam, and Franklin 2020). Business
literature (Kosmopoulou, Liu, and Shuai 2016; Gans and
King 2007) has investigated the effect of coupon trading on
a firm’s ability to personalize. However, using trading as a
way to reduce the impact of personalized pricing and im-
prove fairness has not explicitly been studied.

In this work, we develop a system that allows consumers
to reduce the price they pay for a good online by trad-
ing. Figure 1 outlines how our system, the market, and
consumers interact. First, agents are assigned personalized
prices by the market (a). Some agents agree to participate
in this trading system, which allows the system to see only
these prices (b). The system assigns a matching, and the
transaction price (i.e., the amount to be exchanged) is agreed
upon by the agents or set by the system (c). Finally, if the
transaction is mutually beneficial; it occurs. The initially
higher-paying consumer pays the lower-paying consumer
the transaction price, and receives the good (d).

To implement this system, we make decisions regarding
the matching procedure and transaction price setting pro-
cedure for the resulting matches. We produce one optimal
matching, and then test two transaction price-setting proce-
dures: centralized and decentralized. As this system is in-
tended to improve fairness, we consider four fairness targets
for each transaction price-setting procedure. We produce the
four fairness targets by examining two objectives (i.e., the
value measured: mean and standard deviation in price), and
scopes (i.e., who it is measured for: individuals and groups).
We must also ensure that this system is financially sustain-
able. To do so, we explore how the system’s revenue is af-
fected by the number of agents in the collective, the cut the
system takes from each transaction, and the dispersion (or
range) of prices initially offered by the marketplace. We con-
clude by examining a case study on an empirical pricing dis-
tribution modeled in prior work.

We find that one method for setting the transaction price
(decentralized negotiations between agents) and one fairness
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(a) Market assigns prices
to each agent for a good
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Figure 1: Depiction of the relationship between the market (white square), the system (blue square), and consumers (gray
circles). Consumers enter the market and are offered prices (a). Then, some of these consumers decide to join the collective,
thereby choosing to participate in the exchange system (b). The system assigns a matching, and prices for these transactions are
assigned or decided upon (c). Of these matched transactions, only those that are mutually beneficial to both agents occur (d).

target (minimizing the average net price paid by each agent)
implemented together is fairness maximizing; we are able to
decrease the average price paid by individuals and groups by
67%, when compared to a non-trading scenario (i.e., original
prices assigned by the market). We find that we can achieve
fairness metrics simultaneously if we hold the objective (i.e.,
the value we measure) constant while varying the scope (i.e.,
who it is measured for). The same is not true while varying
the objective and holding the scope constant. When consid-
ering the exchange system’s revenue, the decentralized ap-
proach earns more. Our system acts as an effective coun-
terweight to personalized pricing; we find that as dispersion
of prices decreases, agents are no longer able to achieve the
67% welfare increase from higher dispersion scenarios. In
low dispersion scenarios (i.e., when limited personal pricing
occurs in the market), the exchange system is not viable, fail-
ing to generate revenue even as the number of participants
increases. Our contributions are as follows:

Exchange system design: We design an exchange system
that could feasibly be implemented and financially sustain
itself. Prior work in this area has found personalized pric-
ing in different markets (Hannak et al. 2014; Aznar et al.
2018; Karan, Balepur, and Sundaram 2023), and some has
even proposed fair pricing algorithms (Aurangzeb et al.
2021; Grari, Charpentier, and Detyniecki 2022; Xu, Qiao,
and Wang 2023; Xu et al. 2022; Wang et al. 2016). How-
ever, none to our knowledge has proposed agent-driven
solutions to unfair personalized pricing. In this work we
close that gap — exploring design choices and fairness
targets that will lead to a financially self-sustaining sys-
tem that also maximizes welfare for consumers.

Opportunities from personalized pricing: We find that
while personalized pricing can cause welfare loss to con-
sumers, if taken advantage of, it provides a money-saving
opportunity. While prior work notes that personalized
pricing can help consumers by helping them afford certain
goods (Dubé and Misra 2017), we design a system that
helps all consumers. Surprisingly, we show that highly
dispersed personalized pricing leads to higher welfare and

higher revenue to the system, when compared to low dis-
persion. This finding emphasizes the strengths of our ex-
change system design: we do not require sellers to co-
operate. In fact, when they don’t, it can be beneficial to
consumers and acts as a counterweight to extreme, unfair
personalization.

2 Problem Statement
Consider a simple marketplace M that offers one type of
good g to consumers (or agents) V . Each consumer v ∈ V
requires exactly one unit of good g; the supply of g is finite
but sufficient to satisfy the population. Each agent v ∈ V has
a vector of attributes rv . The agents in V can be partitioned
into non-overlapping groups based on rv .

Pricing algorithm A takes a vector of properties of the
consumer rv as input, and outputs a personalized price pv
for consumer v. The resulting prices may have varying de-
grees of personalization — we measure this using the dis-
persion of prices, δ, our measure of pricing spread. In this
work, we design an exchange system S that takes advan-
tage of personalized pricing so consumers profit. System S
pairs up agents via a matching process P . This matching
process outputs a set of pairwise agent interactions J . Let
ju→v ∈ J be the (directed) interaction parameterized by
agents u and v, where pu > pv . In an interaction ju→v , agent
u will pay some m dollars to agent v for good g. The system
S then takes some fraction γ of this m to sustain the trading
ecosystem, so the payment v will receive for this transaction
is (1 − γ)m. The interactions in J are proposed to agents
by the matching process P , but all interactions need not oc-
cur. An interaction is executed if both agents u and v benefit
according to their utility functions fu and fv , which can in-
clude both positive and negative terms.

We frame the matching process P as a network problem.
Our agents exist in a directed network G = (V,E) where
(u, v) ∈ E if pu > pv . The matching process P produces
interactions J , the matched directed edges. Each agent v
has at most k matched edges: its resource constraint. If an
interaction ju→v is executed, the edge (u, v) has been trans-
acted on. We call u the buyer and v intermediary; one agent



might be matched as both intermediary and buyer on differ-
ent transactions.

In this paper we examine which design of exchange sys-
tem S will maximally improve our fairness targets F on
market M, and under what circumstances it is financially
feasible to maintain. Specifically we ask:

RQ 1: Given a fairness target F , which of the following
methods to set transaction price m will maximize wel-
fare: centralized setting or individual negotiation?

RQ 2: In the context of our exchange system S, are some
fairness considerations (i.e., definitions ofF) more feasi-
ble to achieve than others? In particular, how does vary-
ing F in scope and objective affect feasibility?

RQ 3: How does revenue to the exchange system S change
with size N of the collective, cut γ taken by the system,
and dispersion δ of the pricing algorithm A?

3 Related Work
Fair pricing: Unfair pricing caused by online behaviors has
been found by several studies (Hannak et al. 2014; Aznar
et al. 2018; Karan, Balepur, and Sundaram 2023). One so-
lution for consumers is to redesign pricing algorithms for
fairness. Seminal work on fair pricing (Heyman and Mellers
2008; Rotemberg 2011) examines what fair pricing is and
how consumers may react to various pricing algorithms
by firms. Kallus and Zhou (2020) examine how different
markets and concerns (e.g., information asymmetry) inform
which fairness criteria to consider. Grari, Charpentier, and
Detyniecki (2022) study fair pricing under adverse selection
in the context of insurance, balancing actuarial risk with a
demographic parity or equalized odds constraint. Xu et al.
(2022) explore how imposing restrictions on the degree of
personalized pricing (i.e., the price of an object can’t vary
more than x%) can be customized to balance the needs of
both buyers and sellers. The goal of these works on fair pric-
ing is to create fair algorithms that a seller can use while still
achieving high profits.

While this approach could achieve higher welfare for con-
sumers if deployed, this assumes the ability and willingness
of a seller to do so. To mitigate this issue, we design a
solution to unfair pricing without direct cooperation from
the entity employing differential pricing. Some work has
taken this approach — counterfactual fairness (Kusner et al.
2017) could provide a way for an individual to achieve better
pricing without direct access to the underlying pricing sys-
tem. However, this requires both an accurate causal model,
and toggles that individuals can act on (Karimi, Schölkopf,
and Valera 2021). On the collective action side, Hardt et al.
(2023) quantified the effect of a collective coordinating fea-
ture changes against an algorithmic system. In our work,
collaboration and exchange happens not to change the di-
rect outcome of an algorithmic system, but as a secondary
layer to adjust final outcomes for individuals. Our work does
not require designing a causal model or having individuals
change their behaviors to get better prices. Rather, we focus
on agents who are incentivized by monetary reward to share
information.

Data marketplaces: Data marketplaces have grown in
popularity as entities can directly monetize their own data
by allowing purchasers easier access. Our exchange system
can be framed as a data marketplace as well — agents share
information with the system, and the system and agents
themselves receive a monetary reward in return. Liang et al.
(2018) survey pricing challenges and the structure of such
data markets. Fernandez, Subramaniam, and Franklin (2020)
examine existing data markets and their challenges in adop-
tion. In particular, they discuss the importance of deciding
the market type (internally versus externally-facing) and rule
design. One key challenge is that in many data-trading mar-
kets it is hard for buyers and sellers to accurately value their
data. Even if they could estimate a monetary value, the ul-
timate usefulness of the data is not known since it must be
combined or processed for downstream applications (Fer-
nandez, Subramaniam, and Franklin 2020).

In our scenario, the “data” being traded is pricing infor-
mation, which may provide agents access to a lower price.
Payoffs to our agents are better understood, but still difficult
to value, as they never aware of the lowest possible price.
Modeling this exchange is not easy, as it relies on infer-
ences of user-specific behavior which may not be explicitly
known. In this work we build off existing work on data mar-
ketplaces, defining a new sort of market where users receive
direct monetary benefit from sharing.

Federated learning: In federated learning, data is indi-
rectly “shared” via model updates and aggregated (e.g., Fe-
dAvg (McMahan et al. 2017)). There is a very large existing
body of work investigating fairness and trying to achieve it,
on both group (Lyu et al. 2020; Ezzeldin et al. 2023; Zeng,
Chen, and Lee 2021; Yu et al. 2020; Huang et al. 2020; Li
et al. 2021; Du et al. 2021; Li et al. 2019) and individual (Li
et al. 2023; Yue, Nouiehed, and Al Kontar 2023) levels. In
the fair federated learning framework, it is already assumed
that individual entities want to participate, as the outcomes
are clear. Participation can improve both accuracy in the un-
derlying models as well as some notion of fairness.

In our work, we focus on whether we can incentivize
agents who act purely selfishly to achieve some notion of
fairness. Donahue and Kleinberg (2021) too consider agent
incentives; they extend the federated learning context to con-
sider whether agents should participate in a shared model
or rely on only their local information. However, this work
differs from ours as our objective is not one of model per-
formance. They further investigate (Donahue and Kleinberg
2023) egalitarian and proportional fairness in the context of
these model-sharing games. Salehi et al. (2012) develop a
model-sharing architecture for agents’ mental models but do
not explicitly consider fairness.

Marketplace mechanisms: Shapley and Shubik (1971)
and Roth and Sotomayor (1992) both examine the assign-
ment game — a two sided matching with money, where they
show properties of the core. In our work, notably, we’re in-
terested in situations where everyone has access to the same
good at different prices, rather than valuing goods at dif-
ferent prices. Jagadeesan and Teytelboym (2021) look at
how some markets give rise to universal pricing while oth-
ers employ personalized personalized pricing. Babaioff et al.



Table 1: Our fairness definitions. All definitions rely on ωu,
the net cost to agent u. We use µg to represent the average
net cost to agents u in group g.

INDIVIDUAL GROUP

MEAN µI =
∑

u∈V ωu

|V | µG =
∑

g∈G µg

|G|

S.D. σI =
√∑

u∈V (ωu−µI )
2

|V | σG =
√∑

g∈G(µg−µG)2

|G|

(2021) and Branzei et al. (2024) design auctions to limit
gains from post auction dealings, similar to the ones we in-
troduce here.

4 Fairness
In RQ 2 we ask whether some definitions of F are more
feasible than others to achieve. Here we give those defini-
tions as well as what we mean by feasibility. To develop
our fairness definitions at the individual and group levels,
we started by considering what the “ideal” scenario would
be for all agents. We determined that the ideal fair outcome
would result in all agents paying the same, lowest price for
the good. In other words, we sought to minimize both aver-
age price and the standard deviation in prices paid by agents.
However, these ideal outcomes might not be possible in our
exchange system. Thus, we demonstrate lower bounds for
mean (Theorem 1) and standard deviation (Claim 1) which
can be found in Section 5. We measure the “feasibility” of
our fairness metrics by considering how close each mean
and standard deviation come to the ideals.

Thus, we vary the objective and scope to get different def-
initions of fairness, i.e., what we measure, and who we mea-
sure it for. Our measured outcome is always the net cost in-
curred by agents from participating in system S, assuming
that each agent purchases exactly one unit of good g. For ex-
ample, if agent u is offered price pu by the market, but pays
m dollars to agent v to buy good g for price pv , then agent
u’s net cost is m. Agent v’s profit from selling the ticket is
(m(1 − γ) − pv) and therefore their net cost for their own
ticket is pv − (m(1 − γ) − pv). We denote ωu as the net
cost to agent u, where ωu < 0 implies monetary gain to
u. We experiment with two objectives (mean and standard
deviation) and two scopes (individual and group-level). We
consider a group to be a collection of individuals who share
a demographic attribute; i.e., u and v are in the same group
if ru = rv . We call this set of groups G. This gives us 4
different fairness measures; we present them in Table 1.

We seek to minimize these values. Minimizing individ-
ual mean implies we want each agent to minimize the price
they’re paying (some may even earn money from S). Mini-
mizing individual standard deviation implies we want agents
to benefit similarly from system S; no one agent should
make a large profit off of others, nor should any agent not
profit while others do. In the group fairness cases, we desire
similar outcomes, but distill each group by taking the mean
over individuals in the group. We recognize that these defi-
nitions of fairness are neither standard nor comprehensive.

We also considered more standard fairness metrics, such
as demographic parity, predicted parity, and equalized odds
(Agarwal et al. 2018; Agarwal, Dudı́k, and Wu 2019; Bera
et al. 2019; Zemel et al. 2013; Zafar et al. 2017; Kusner et al.
2017; Kleinberg et al. 2017; Dwork et al. 2012). However,
we decided that for our application we could best capture
fairness by designing metrics from our ideal scenario. We
vary our fairness target over these definitions to test RQ 2.

5 The Model
In this section we detail our model, which consists of strate-
gic agents V interacting in a marketM alongside exchange
system S. We begin with a high-level overview of the model,
followed by detailed descriptions of each relevant feature.
We introduced considerable notation in Section 2; it is sum-
marized in Table 3 in Appendix A.

Algorithm 1: Model overview
Data: V the set of agents, N the size of the collective
// PRICING ALGORITHM

1 for u ∈ V do
2 pu ← getPrice(u)
// MATCHING PROCESS

3 D ← {} ;
4 G← (V,E) such that directed edge (u, v) ∈ E

exists iff pu > pv ;
5 for u ∈ V do
6 D(u)← v from getMatching(G, k) ;
// EXCHANGE PROCESS

7 for u ∈ V do
8 v = D(u) ;
9 m← getM(ju→v) ;

10 if fu(ju→v) > 0 and fv(ju→v) > 0 then
11 agent u pays m dollars to v to get good g at

price pv ;
12 else
13 agent u pays pu to the marketM for good g
14 return G

Model overview
We begin with agents V who desire exactly one unit of good
g on market M. Each agent v ∈ V is initialized with at-
tribute vector rv and price pv for good g according to pricing
algorithm A.

The matching process P outputs a set of interactions J
between agents. The transaction price m of each interaction
is then set in either a centralized or decentralized fashion,
as described in RQ 1. Given a matched edge (u, v), buyer u
and intermediary v exchange money for good g if u and v
both have positive utility for the transaction and are within
their resource constraints. Once all agents make transaction
decisions, any agent x who has not yet bought good g will
do so at price px. Algorithm 1 above references sub-routines
getPrice, getMatching and getM , which we detail in this
section, along with utility function fu for agent u.



Agent attributes
Our agents are associated with attributes and utility func-
tions — in this section we elaborate further.
Consumer properties: We assign each agent v a vector of

consumer properties rv . We implement rv as a scalar, but
this can be trivially extended. We consider this consumer
property to represent some demographic feature that is
used by the pricing algorithm A to assign price pv .

Resource constraint k: Each agent v ∈ V has the same
resource constraint k — the number of interactions for
which agent v can serve as intermediary. Recall that all
agents can serve as buyer for only one interaction.

Utility function: Each agent u has a utility function fu. The
form of this function is the same for each agent. Recall
that in a given interaction ju→v , agent u is the buyer while
agent v is the intermediary. Then, agent u will gain utility
from any savings from buying the good from v at price m
rather than from the market at price pu. Agent v will get
utility from any profit after buying good g for agent u at
price pv . We give the utility functions below:

fu(ju→v) = pu −m− ϵui

fv(ju→v) = m(1− γ)− pv − ϵvi

The (1−γ) term accounts for the system receiving γ pro-
portion of the transaction amount m. ϵui and ϵvi repre-
sent the disutility to u and v from spending time on this
interaction. Each agent u is assigned a truncated Normal
distribution Eu, and ϵui

is drawn from Eu.

Pricing algorithm, A
Here we describe how prices are assigned to agents in the
marketM (getPrice). Pricing algorithm A determines the
price for the good g offered to each agent. To capture a wide
range of pricing algorithm behavior, we define a notion of
dispersion (δ) that captures the spread of prices outputted by
algorithm A. Mathematically, it is the range within which a
large proportion of possible prices fall. We define a pricing
algorithm Aδ which assigns prices with dispersion δ. We
construct each pricing algorithm Aδ as follows:
• The range of feasible prices is in (0, 1].
• Aδ is biased based on some immutable attribute rv of the

consumer v. We partition the set of agents V into non-
overlapping groups based on attribute rv . We call this set
of groups G.

• Agent v’s price pv is drawn from a distribution DGv
,

where Gv is v’s group. All agents from the same group
have their price drawn from the same distribution.

• Dispersion δ represents the 2σ range of possible prices
(i.e., maxg,h∈G((µg − 2σg)− (µh − 2σh))).

Our construction of these pricing algorithms is intended
to capture a range of different seller behaviors. We detail
specific implementation in the results section. We also ex-
amine an empirical pricing algorithm; we use the pricing
model presented in prior work (Karan, Balepur, and Sun-
daram 2023), which investigates differential prices for air-
line tickets. Details for this model can be found in Ap-
pendix C.

Exchange system, S
The system S facilitates agent exchange of money for a
good. Developing our system requires us to consider the de-
sign of two factors: the fairness targetF and the choice of m,
the money the buyer u pays to intermediary v. These mod-
eling choices align with RQ 2 and RQ 1; we have already
described the design of the fairness targets. In this section
we discuss the choice of m in detail.

In RQ 1 we ask whether the transaction price m should
be set centrally or determined by individual negotiations. We
experiment with two different methodologies for setting the
transaction price m:
Centralized: We solve for the optimally fair matching of

agents and setting of m values (maximizing F). The sys-
tem is not aware of the private utility functions of individ-
uals, so the recommended matchings at the optimal m val-
ues may not actually transact. This optimization outputs a
set of interactions J such that each agent has at most one
outgoing interaction (i.e., they are the buyer), and at most
k-many incoming interactions (i.e., they are the interme-
diary). The transaction prices m for all ju→v ∈ J are
simultaneously set centrally to maximize F . Agents can
either accept the transaction price m or refuse.

minimize
∑

u∈V ωu

|V |

s.t.
pv

1− γ
≤ muv ≤ pu ∀ju→v ∈ J

xuv ∈ {0, 1} ∀ju→v ∈ J∑
v

xuv ≤ 1 ∀u ∈ V∑
u

xuv ≤ k ∀v ∈ V

ωu =
∑
v∈V

xuvmuv +
∑
v∈V

(1− xuv)pu

−
∑
v∈V

xvu(muv(1− γ)− pv) ∀u ∈ V

(1)

Above is the linear program using µI as our example ob-
jective function. The other objectives can be found in Ta-
ble 1. The goal of this program is to output interactions
J along with transaction prices mj for all ju→v ∈ J . If
no ju→v exists in J for an agent u, then u will pay the
original price it was assigned for good g, which is pu.
Due to the presence of xuv this is a mixed integer pro-
gram, which is at least NP-hard (Arora and Barak 2009).
When we optimize µI and µG the objective is linear, while
when we minimize σI or σG , this is a Mixed Integer
Quadratic Program, also NP-hard (Pia, Dey, and Moli-
naro 2017). In our analysis for the linear objective, we
solve to completion. For the quadratic objective, we re-
turn the best result given by the solver after a pre-specified
amount of time (60 seconds). We use Gurobi (Gurobi Op-
timization, LLC 2023) as our solver.

Decentralized (individual negotiation): Here, we keep the
interactions (or matching) J given by the centralized pro-
cess, but allow agents to negotiate individually for the



transaction prices mj . Rather than simulating bargain-
ing between the agents, we make an assumption regard-
ing the settled transaction price. In our implementation,
we set each mj equal to the Nash bargaining solution,
which maximizes the product of the welfare gain (Os-
borne 1990). We choose this value because it is a likely
outcome after individual negotiations, but other values
could be used as well, such as the mean of prices.

We test four definitions for F and two m-setting pro-
cesses; in total this gives eight methodologies. For conve-
nience we denote a specific process and fairness optimiza-
tion tuple as XY for X ∈ {µI , µG , σI , σG} and Y ∈ {C,
D}. For example, µC

I refers to optimizing µI via the central-
ized methodology. We notate µY to refer to µY

I , µ
Y
G methods

and σY to refer to σY
I , σY

G methods.

Theoretical claims
Given the model definition above, we make the following
theoretical claims. First, we consider the bounds on mean
agent welfare (Theorem 1) and standard deviation in agent
welfare (Claim 1). Knowing these values allows us to deter-
mine the feasibility of our constructed fairness criteria. We
also show that agents are always better off having partici-
pated in the system (Claim 2). We state them here and defer
the proofs to Appendix B.

Theorem 1. The mean net utility over all agents after trad-
ing is bounded below by pmin(1 +

γ
|V |(1−γ) ).

Claim 1. When λ = 0 and k = |V |−1, the optimal standard
deviation in price is 0.

Claim 2. This system satisfies Individual-Rationality (IR)
regardless of how transaction price m is set.

6 Results
We implement our model S with a collective size of N =
100. We sample Eu ∼ truncated N(µ, 0.01) where µ ∼
U(0, 0.02). We set |G| = 5 and dispersion values δ = {0.05,
0.25, 0.50, 0.75, 0.95}, which gives us five pricing algo-
rithms {A0.05,A0.25,A0.50,A0.75,A0.95}. All pricing algo-
rithms are constructed so prices range from (0, 1]. Each pric-
ing algorithm has a set of Normal distributions DG . For ex-
ample, A0.95 involves five Normal distributions with means
{0.1, 0.3, 0.5, 0.7, 0.9} respectively and all having standard
deviation 1

30 . We note that our construction changes the dis-
tribution of prices while ensuring that mean price across
pricing algorithms is roughly the same ($0.50) — this al-
lows us to analyze the impact of dispersion directly.

RQ 1: Setting transaction price m

In RQ 1 we ask: Given fairness metricF (Table 1), which of
the following methods to set transaction price m will maxi-
mize welfare: individual negotiation or central allocation?

In Section 5 we described in detail two methods to set
transaction price m for an interaction ju→v . In brief, the cen-
tralized setting solves for optimal edges and prices m, from
which the agents can choose to accept or reject the given
price. The decentralized option uses those solved edges from
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Figure 2: Realization of eight fairness definitions under dif-
ferent optimization procedures (four fairness targets, two m-
setting procedures), N = 100, γ = 0.4 using pricing al-
gorithm A0.95. We show centralized methods in blue, and
decentralized in orange. We show variance bands for one
standard deviation, and on the x-axis, we vary k. We see that
µI and µG can be effectively lowered by the decentralized
methods targeting their respective metrics. σI and σG are
much less feasible for all metrics; in particular σI for decen-
tralized methods increases as k increases. This is because
agents are still trading at the Nash bargaining solution. As k
increases, those with the best price are able to profit more,
increasing the variance.



Table 2: Our “feasibility” measure for each fairness metric when k = 32, γ = 0.4. We examine whether optimizing for each
metric actually improves said metric, under both centralized and decentralized m-setting. We note that µD methodologies are
feasible while µC are not. This is in contrast to σC and σD methodologies, which see no change in performance. This is because
prices set in σC scenarios are not transacted on; when agents decide for themselves, they can increase the spread of final prices.

Centralized Decentralized
Metric Pre Trade Post Trade % Change Post Trade % Change
µI 0.503 0.497 -1% 0.166 -67%
σI 0.284 0.283 0% 0.759 168%
µG 0.499 0.499 0% 0.160 -68%
σG 0.283 0.277 -2% 0.366 29%

the centralized case and then instead allows the paired agents
to negotiate for the transaction price m. In our implementa-
tion, m values for these interactions are chosen according to
the Nash bargaining solution — a likely equilibrium price.

To answer RQ 1, we run simulations on our system S.
We test a centralized and decentralized procedure for setting
m, four fairness targets F , six values for k (the agents’ re-
source constraint), with γ = 0.4. Here we present A0.95 as
the pricing algorithm (i.e., prices are highly dispersed with
δ = 0.95). Each simulation is run 100 times; we present the
average of these, as well as bands that show one standard
deviation. In Figure 2, we plot all eight procedures against
four fairness targets. We use blue to represent centralized
m-setting while orange represents decentralized. When op-
timizing for µI (Figure 2a) and µG (Figure 2c), decentral-
ized procedures that specifically optimize for said fairness
metric outperform the centralized variants, achieving an av-
erage net cost of $0.17 (nearly a 66% reduction in price paid
compared to the average price of $0.50). For σI (Figure 2b)
we see that the decentralized procedures perform worse as
as k increases. This occurs because while the edges are set
to minimize the objectives, agents selfishly negotiate. As k
increases, agents with better prices can complete more trans-
actions, while those with worse prices can only get a better
price once. For σG (Figure 2d) we see that decentralized and
centralized methods which optimize for σ perform similarly.
Notably, in all four settings, the centralized method varies
little with k, as very few agents want to transact at the cen-
trally set prices. This is due to the system S setting prices
that are uninformed by agents’ utility functions, so any profit
to agents may not be sufficient for positive utility.

Allowing agents to negotiate after determining the
matched edges is key for transactions to occur. As a re-
minder, when centrally deciding the m value, the system S
is unaware of individual disutilities which can cause agents
to reject an interaction at price m that was set for them. Con-
versely, a rejection when m is set to be the Nash bargaining
solution is much less likely.

RQ 2: Fairness definitions
In RQ 2 we ask: In the context of our exchange system S,
are some fairness conditions (i.e., definitions ofF , described
in Section 4) more feasible to achieve than others? In partic-
ular, how does varying F in scope and objective affect the
ability of the system to achieve the ideal outcome?

To answer this question we run simulations as described

previously. In Figure 2 we show how optimizing for each
fairness target F affects the measure of each outcome. No-
tably, we see that while when specifically optimizing for µI

and µG , decentralized m-setting is able to effectively reduce
the average price paid. On the other hand, achieving low
standard deviation (Figures 2b and 2d) is more difficult un-
der both centralized and decentralized m-setting. We can in-
vestigate how optimizing for each fairness metric compares
to the “ideal” scenario. In Table 2 we show numerically that
µ-optimizing procedures are more feasible under decentral-
ized settings, while σ-optimizing procedures either do no
better or significantly worse than the initial starting point.

Here, we also examine trade-offs — can we achieve mul-
tiple definitions of fairness simultaneously? Figure 3a de-
picts how each methodology achieves a combination of in-
dividual mean welfare µI and group mean welfare µG . Ev-
ery methodology either achieves both in tandem or achieves
neither (the same holds for σI and σG). However, achieving
low mean and standard deviation in welfare simultaneously
is difficult (Figure 3b). One can try to achieve low mean,
but will sacrifice low standard deviation, and vice versa.
Our results suggest that in practice, the designer will need
to choose which objective to optimize for.

RQ 3: Revenue to the exchange system S
In RQ 3 we ask: How does revenue to exchange system S
change with the number of consumers N , the cut taken by
the system γ, and dispersion δ of pricing algorithm A?

For exchange system S to earn reasonable revenue, two
things must happen. First, there must be a mechanism to re-
cover some cost from transactions; and second, agents must
have an incentive to participate even with the system takes a
cut. We compute the revenue generated by each method: two
m-setting methodologies for four fairness objectives (Fig-
ure 4) to determine which earns the system the most revenue.
In Figure 4a we show, for different γ values, how much the
system is able to earn from each approach. We see that the
µD methodologies result in highest revenue for the system.
In contrast, σD methodologies earn some revenue, while
centralized methods fail to earn. For decentralized negoti-
ation methods, as gamma increases, revenue increases un-
til some maximum (approximately γ = 0.8), where agents
refuse to trade, and revenue decreases. At this point we see
the system earning ≈ $22. Given that the original seller
would have made $50 when agents were not trading, this
represents a substantial amount of revenue going to the ex-
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Figure 3: Fairness trade-offs in different settings. Ideally,
average welfare loss and standard deviation are both low.
Achieving low µI and µG simultaneously is possible (σI
and σG behavior similarly). Conversely, achieving low mean
and standard deviation in conjunction are not possible, in ei-
ther the individual or group case.

change. In Figure 4b we show system revenue and agent in-
termediary profits specifically for µD

I . For sufficiently high
γ values, system revenue decreases as the system takes too
much and agents find it unprofitable to trade. Intermediary
agents on the other hand consistently lose profits as γ in-
creases — their profit maximization occurs at γ = 0.

To study the impact of dispersion and N on revenue, we
again focus on µD

I , which is fairness and system revenue-
maximizing. We examine the importance of dispersion
in Figure 5, where we run our simulation with five dif-
ferent pricing algorithms: A0.05,A0.25,A0.50,A0.75,A0.95.
We construct our dispersion models to hold means constant
— this allows for direct comparison of dispersion levels,
which can dramatically impact the prices that individuals
pay as well as the sustainability of the system. In Figure 5a
we show that under system S, higher dispersion models re-
sult in lower average prices for individuals. For high values
of k, the highest dispersion model achieves an average net
price of $0.16 versus $0.50 in the lowest dispersion case — a
near 64% reduction. Figure 5b shows that this system earns
more under higher dispersion settings; if dispersion is too
low, trading with any fees is not viable. We closely exam-
ine the high dispersion scenarios: the pricing algorithm with
δ = 0.75 narrowly earns more than δ = 0.95 (within vari-
ance bounds). This is because when dispersion is sufficiently
high, agents are willing to trade. If dispersion increases (say,
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Figure 4: In (a) we show how system revenue changes with
respect to γ under high dispersion δ = 0.95 and k = 16. µD

methods at least match σ methods, which in turn outperform
centralized m-setting methods. In (b) we show for µD

I , agent
earnings from trades and system revenue. For sufficiently
high γ, system revenue falls as agents find fees too high.

from δ = 0.75 to 0.95), it results in a decrease in the Nash
bargaining solution, meaning that the system earns slightly
less. Nevertheless, the revenues are comparable.

We can also use the collective size N and dispersion δ of
the market to determine whether one should invest in this
type of system. We see in low dispersion settings δ = 0.05
or δ = 0.25 that no N would be able to sustain this sys-
tem, for δ = 0.5 to δ = 0.95 the revenue scales linearly up
to N = 500. In order to justify developing such a system,
the market prices need to exhibit sufficiently high dispersion
— otherwise there is no revenue to be made regardless of
the collective size. Whether this system S is profitable to
build depends on the cost structure of the implementation:
the fixed cost as well as cost that scales with N . Our results
suggest that more dispersed personalized pricing allows the
system S to better help users achieve fairer outcomes while
earning good revenue. This provides an opportunity for fair
pricing even when sellers employ extreme personalization.

7 Discussion
Analysis of an empirical pricing distribution: Here we
show our system S on a real (rather than simulated) price
distribution. We use prices as modeled in prior work (Karan,
Balepur, and Sundaram 2023); find details regarding im-
plementation in Appendix D. Using this pricing distribu-
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Figure 5: Impact of price dispersion on outcomes. Because
lower prices are more common in high dispersion scenarios,
as k increases, more agents are able to access this lower price
(a). In (b) we see that if the dispersion is too low for a given
γ, trading will decrease. Assuming a viable γ value, system
revenue increases with N , and δ = 0.75 leads to the high-
est revenue. At δ > 0.75 nearly all agents have incentive to
trade; increasing δ lowers the Nash bargaining solution, re-
sulting in slightly lower system revenue.

tion (which includes nine non-overlapping groups), we run
a simulation with N = 100 agents. Figure 6 shows that even
though the range in prices is small, we still see improvement.
Specifically, the range is $6.15, and the maximum price is
$275.82; this gives a dispersion of ≈ 0.02 after normalizing
prices to (0, 1]. Without trading, the gap between the aver-
age price and best price was $3.23. Trading using the µD

I
methodology results in $1.22, a 62% reduction of the gap
(Figure 6a). We set γ values to be much smaller than in the
simulated examples since the system S takes γ proportion of
the higher transaction prices. Even with low γ values, rev-
enues are reasonable, peaking at γ = 0.01 (Figure 6b) and
about $100 in revenue for N = 100. These results show
that it could be feasible to implement our system in a market
such as this one.

What is fair?: We consider various definitions of fair-
ness in this work, outlined in Table 1. Ideally, one would
like to maximize all of these definitions simultaneously for
the most “fair” result. In particular, the perfect solution
would involve every member of every group simultaneously
achieving the lowest price, minimizing the variation and av-
erage price paid across individuals and groups. The results
in Figure 3a suggest that simultaneously achieving group

and individual mean welfare objectives is feasible. However,
Figure 3b suggests that simultaneously achieving low prices
and low variation in prices across individuals or groups is
difficult. In particular, there is an explicit trade-off between
mean and variance. We make no claim on which one is ideal
— that is context dependent. However, if finances are of con-
cern, Figure 4a suggests that focusing on µ is more likely
to result in a self-sustaining system. Other notions of fair-
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Figure 6: Exchange system on an empirical pricing distribu-
tion. In (a) we see again that µD performs best, and is able to
reduce the gap between the best possible price and the prices
paid by 62%. In (b) the cut taken by the system γ must be
low; at γ = 0.01 the system still earns $100.

ness (e.g counterfactual) were not explored here but could
be more or less feasible and produce different revenues.

The closeness of µI and µG : In our implementation, µI

and µG values track very closely in many results. This is
because an average over individuals weights each individual
equally, while an average over groups weights individuals
in smaller groups more heavily. Given our assumption that
groups are roughly equal in size, µI and µG are algebraically
quite close; if group sizes were exactly the same, µI and µG

would be identical. Purposefully varying group sizes could
dramatically change the two measures; we leave this as a
topic for future exploration.

Collusion of system and market: We assumed that the
system is fairness-minded and independent from the market.
However, when two entities are profit-seeking, it is possible
that owners of the system could forgo fairness in exchange



for higher revenue. If the system and market collude, the
market could produce prices that when passed through the
colluding exchange system S, result in worse outcomes for
consumers, but higher revenue for the system and market.
Considering our finding that higher dispersion can increase
revenue and welfare, existence of such a strategy is very pos-
sible. Thus, the assumption that the system is independent
from the market and has different goals is key.

8 Future Work and Limitations
Scale of transactions: In this work we discuss the sale of
one type of good g. We assume that agents V all browse the
marketM around the same time for good g, so the system
S matches these agents together. We believe this closeness
in browsing time is important so all agents in V can acquire
good g in a timely manner. It is possible, however, that mul-
tiple agents are browsing the same marketplace for multiple
goods. This means that multiple matchings and transactions
would occur in parallel, increasing the profit but also the
cost of the system S to maintain itself. If our system were
to be deployed on a real market, the time scale and number
of goods would need to be considered in the matching. We
leave this multi-good matching problem for future work.

Market structure: Our simulations assume a particu-
lar market structure, where a single good is available with
enough supply to satisfy all demand. We also assume that
each agent must buy the good. However, one rationale for
personalized pricing is that some users are less willing to
pay for a good than others (Dubé and Misra 2017). Incorpo-
rating this requires a more detailed utility function for pur-
chasing the good in the first place, which we defer to future
work. We also assume that the resource constraint per user
is the same; in practice this may not be true.

Response by pricing algorithm: Importantly, we assume
that the market’s pricing algorithm does not respond to this
new consumer trading. We believe this is a reasonable as-
sumption; if a very small group of individuals is participat-
ing in this system, the consumers’ behavior may go unno-
ticed. However, we recognize that if the behavior is detected,
the pricing system could react, possibly raising prices over-
all and resulting in all users losing access to cheaper pric-
ing — this has been suggested by Kosmopoulou, Liu, and
Shuai (2016) This dynamic between the pricing algorithm
and agents is a rich area for future exploration.

Collective Formation: Here we allowed agents to join
the collective for free but pay a fee per transaction. An-
other potential structure is to charge agents a flat fee as soon
as they choose to join the collective, and then allow them
to exchange without additional transaction cost. However,
this structure comes with the challenge (both practically and
in modeling) of convincing users to join a collective with
an upfront fee. Investigating and comparing these exchange
system structures is an avenue for future work.

Human studies: In this work we make simplifying as-
sumptions regarding the actions of the agents, e.g., the for-
mat of the utility functions, the probability of joining the
collective, the demographic attributes, and the resource con-
straints. To truly test these assumptions, future human stud-
ies would be ideal. This would allow us to test our design

principles on boundedly-rational humans who may not re-
spond as we originally modeled them. Other design princi-
ples could be tested in such a setup as well (e.g., wording of
messaging to consumers) to incentivize them to make trades.

9 Conclusion
In this work we introduced a system that takes advantage of
personalized pricing to improve fairness. We examined the
effect of price dispersion and explored two different trans-
action price-setting procedures paired with four fairness tar-
gets. These modeling choices set the transaction prices from
which the system and agents can profit. We showed that our
system’s revenue is higher when prices are more dispersed,
and that agents are able to achieve lower prices (up to 67%
improvement compared to baseline). We demonstrated that
a decentralized negotiation approach is better able achieve
most notions of fairness compared to a centralized approach.
We also showed that fairness targets with the same objective
(i.e., the value measured), but different scopes (i.e., who it
is measured for) were able to be achieved simultaneously.
However, fairness targets with the same scope but different
objectives were difficult to achieve in conjunction. While a
designer could choose to focus on any one of these targets,
from a financial sustainability perspective, minimizing mean
cost paid by an individual or group earned more than other
targets. Our approach is a consumer-driven solution to per-
sonalized pricing that does not rely on fair pricing by the
seller, or regulations on the marketplace. Further directions
include varied collective formation approaches as well as
evaluating this system on humans. Our results are theoret-
ical evidence that such a system could improve fairness for
consumers while sustaining itself financially and providing
a useful check against extreme personalized pricing.
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A Notation
The following table serves as a reference for notation used
throughout the paper.

Table 3: Summary of Notation

NOTATION DESCRIPTION

G = (V,E) the set of agents V connected by edges E
M the marketplace
g the one type of good being offered inM
S the exchange system
A the pricing algorithm
P the agent-matching process
J the set of agent interactions defined by the

matching process
F the fairness metric that our process aims to

optimize
rv the vector of consumer v’s properties
δ the dispersion of pricing algorithm A
pv the price offered to agent v by algorithm A
N the number of agents V

fv(ju→v) utility function f for agent v that takes an in-
teraction and price as input

m the transaction price of an interaction
k resource constraint for all agents
γ the proportion of transaction price m that the

system S takes

B Proofs
Here we show proofs of our theorems and claims.
Theorem 1: The mean net utility over all agents after trad-
ing is bounded below by pmin(1 +

γ
|V |(1−γ) ).

Proof. The total gain from this transaction is pu − muv +
muv(1 − γ) − pv = pu − pv − γmuv . We can sum across
all transaction to get the total gain. The total net price is the
sum of original agent prices minus the gains from trade. In
other words,

∑
i∈V pi −

∑
(u,v)∈J pu − pv − γmuv . We

note that in
∑

i∈V pi −
∑

(u,v)∈J pu, the second term at
most one pi, as we only allow for buyers to trade once. This
leaves us only with nodes that never bought from an inter-
mediary. We can write this as

∑
i∈V \J pi +

∑
(u,v)∈J pv +

muvγ. The first two sums together give us the price of
the nodes that didn’t transact plus the sum of the prices
of the nodes that did. This covers all nodes, and we know
that these prices can’t exceed the min price. Hence we
can lower bound this by ≥ Npmin +

∑
(u,v)∈J γmuv .

We also know that for a transaction to occur it must be
that pv

1−γ ≤ muv . Hence we can further upper bound by
≥ Npmin +

∑
(u,v)∈J γ pv

1−γ ≥ Npmin + γ|J |pmin

1−γ . Com-

puting the average we have
Npmin+|J |pmin

γ
1−γ

N = pmin +
|J |
N pmin

γ
1−γ ≥ pmin(1 +

γ
|V |(1−γ) ).

Claim 1: When λ = 0 and k = |V |−1, the optimal standard
deviation in price is 0.

Proof. If λ = 0 then if all agents trade with the agent with
the lowest price at m = pmin then all agents will receive
pmin, while the lowest price agent doesn’t earn any positive
benefit. The net price to all agents is pmin and hence the
standard deviation will be 0.

Claim 2: This system satisfies Individual-Rationality (IR)
regardless how transaction price m is set.

Proof. Regardless how m is set, buyers only transact on m
if fu(ju→v) = pu−m− ϵui ≥ 0 where ϵui ≥ 0 is assumed.
If m is small enough then the agent will choose to accept,
if m is too large, the agent will reject and instead pay their
original price pu, hence the agent is no worse off. A simi-
lar process holds for the intermediaries. If both agents have
positive utility they will trade and both receive a benefit. If
one agent would not receive a benefit, that agent will reject
the trade and both agents will be just paying their original
price. Hence they are no worse off in participating in this
system.

C Pricing algorithm details
As described in Section 5, we construct a family of pric-
ing distributions Aδ parameterized by δ, where δ repre-
sents the 2σ range of possible prices. We consider δ =
{0.05, 0.25, 0.5, 0.75, 0.95} with |G| = 5. For a given pric-
ing algorithm, we have µ1, µ2, ...µ5 for each group and a
fixed σ for all groups. For each group member in group
g ∈ G, we sample a price from N(µg, σ). Appendix C de-
tails for all five pricing algorithms Aδ , the respective group’s
mean as well as the σ used. By construction, the price dis-
tributions produced by these algorithms have the same mean
($0.50), which allows us to specifically focus on understand-
ing the role of dispersion within our proposed system.

Table 4: Parameters that go intoAδ for the respective pricing
algorithm

δ µ1 µ2 µ3 µ4 µ5 σ

0.95 0.1 0.3 0.5 0.7 0.9 3
90

0.75 0.2 0.35 0.5 0.65 0.8 3
90

0.5 0.3 0.4 0.5 0.6 0.7 2
90

0.25 0.4 0.45 0.5 0.55 0.6 1
90

0.05 0.5 0.5 0.5 0.5 0.5 1
90

D Flight Pricing Simulation
Flight Price Model
We use a pricing model from prior work to produce
our empirical pricing distribution (Karan, Balepur, and
Sundaram 2023). In this market, the average price was
$270.45. The work presents pricing models from var-
ious sellers in the market, we use the model pre-
sented for “Third Party 1”. In the work, they present
the offsets from the base price of the flight ticket :
[$4.55, $1.46, $5.29, $3.55, $6.15, $2.91, $2.36, $5.05].



Table 5: Prices for Aflight. No variance is used for this algo-
rithm.

Group Price
µ1 $270.45
µ2 $271.91
µ3 $272.46
µ4 $273.01
µ5 $274.21
µ6 $275.42
µ7 $275.82
µ8 $276.20
µ9 $276.60

From these mean values we created nine non-overlapping
groups of agents, where the price for each group is the offset
from the base price. We directly assign the price from one of
the nine mean values listed purely based on the group.

Agent Utilities
The utility structure of the agents is the same as described
in Section 5. For the individual disutility each agent u is
assigned a truncated Normal distribution Eu with varying
means (draw from a U [0, 1]) but the same standard devia-
tion (0.5) where the numbers are chosen with respect to the
prices from the flight price model.


