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ABSTRACT

In this paper we address how complex social communities emerge

from local decisions by individuals with limited attention and

knowledge. This problem is critical; if we understand community

formation mechanisms, it may be possible to intervene to improve

social welfare. We propose an interpretable, novel model for attrib-

uted community formation driven by resource-bounded individuals’

strategic, selfish behavior. In our stylized model, attributed indi-

viduals act strategically in two dimensions: attribute and network

structure. Agents are endowed with limited attention, and commu-

nication costs limit the number of active connections. In each time

step, each agent proposes a new friendship. Agents then accept

proposals, decline proposals, or remove friends, consistent with

their strategy to maximize payoff. We identify criteria (number of

stable triads) for convergence to some community structure and

prove that our community formation model converges to a stable

network. Ablations justify the ecological validity of our model and

show that each aspect of the model is essential. Our empirical re-

sults on a physical world microfinance community demonstrate

excellent model fits compared to baseline models.

1 INTRODUCTION

How do complex social communities emerge from behaviors of

attributed, selfish, resource-bounded individuals (i.e., with limited

attention and who lack global network knowledge)? Developing

an ecologically valid community formation mechanism is a chal-

lenging problem. If we can do so, we can improve social welfare

by intervening via network-specific policy recommendations. For

example, improving social welfare is salient in communities where

misinformation spreads [4]. While we understand mechanisms by

which global network structure [8] and decentralized search [31]

emerge from individual actions, we lack similar community for-

mation mechanisms. Community detection has been extensively

studied [22, 34, 35, 38, 41, 49], but there has been limited work

explaining how communities form through individual action.

While non-strategic models [20, 1, 48, 28] may generate net-

works with similar structural properties to social networks, they

are not explanatory models. Individual choice plays a crucial role

in community formation. Individuals have preferences over the

structure of these communities; some may prefer dense groups

with high trust, others may prefer to connect to a variety of people,

maximizing social capital [12, 27, 11, 10]. People may also prefer to

connect to those who are similar or different from themselves.
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We propose a model for attributed community formation, where

communities emerge through individuals’ strategic, selfish behavior.

In our stylizedmodel, attributed individuals strategize in two dimen-

sions: who they want to be friends with (homophily vs. heterophily)

and what local network structures they desire (highly embedded

vs. social capital). We know from Schelling’s seminal work [44, 45]

that an individual’s preference for homophilous interaction with

neighbors can lead to highly segregated communities. Conversely,

friendship diversity can provide structural advantages [27]. We also

know that some individuals prefer highly embedded communities

that foster trust [26], yet others seek social capital for the structural

advantages [11]. Inspired by the work of Dunbar [19], individuals

in our model can support only a limited number of active com-

munications. By triadic closure [32], individuals largely rely on

their friends to introduce them to potential connections with some

connections resulting from random encounters.

In this work, attributed community formation proceeds as fol-

lows. First, each agent examines their neighbors’ connections as

candidates for friendship. One additional node is revealed at random

as a candidate, which mimics friendships arising from serendipitous

encounters. After every agent proposes to the utility-maximizing

candidate, all agents examine incoming proposals for friendship.

They then myopically choose to do one of three things: 1) ac-

cept a proposal, 2) remove an existing friendship, 3) do nothing —

whichever maximizes their payoff. Since all agents have a constant

endowment of resources, and communication with friends is costly,

dropping a low utility connection may prove strategic. In this work,

we consider a population-level mixing of strategies; thus, we can

view this model as an evolutionary game. We then identify criteria

for convergence to a community structure. Our empirical results

on a large microfinance dataset [6] demonstrate excellent fits to

the model. Our contributions are as follows:

Evolutionarily Stable Communities: We propose a model for

community formation that is evolutionarily stable. We define a

notion of stability over triads; in contrast prior work considers

pairwise stability [37]. We show that for any finite network the

number of stable triads is non-decreasing, and so our model must

converge to a non-unique equilibrium state.

Identification of Essential Agent Properties: In this work, we

identify and test necessary behavioral properties of agents. Our

agents are resource-constrained, restricted to local network knowl-

edge only, and have preferences over both network structure and

neighbor attributes. Prior work does not consider these properties

in conjunction. We demonstrate through ablation tests that these

three ecologically valid behavioral assumptions are necessary
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to explain the formation of complex community structures. We

elaborate on these model properties in Section 4.

Interpretability: Ourmodel parameters characterize the nature of

the agents in the network in away that is easy to understand. Prior

work on community formation [16, 37] uses decision functions

whose parameters are difficult to interpret and rely upon vast

amounts of data. We identify mixing proportions over strategies

which help us explain and predict the network outcome.

2 RELATEDWORK

There are many social network formation models that focus on

producing graphs with some subset of observed properties of real

networks. Within this broader class of network formation models

are models which focus on community formation.

Non-strategic Network Formation: Classic non-strategic network
formation models include the Erdős–Rényi [20], Barabási–Albert

[1], Watts-Strogatz [48], and the Stochastic Block Model [28]. The

model in [43] merges cliques to form a network with strong commu-

nity structure. While these models may generate networks which

have similar structural properties to social networks, they are not

plausibly explanatory models due to the lack of individual choice.

Strategic Network Formation: Network formation games [21, 3, 2,

30] have been extensively studied and efficiency bounds are often

known. Utility functions in such games are usually interpretable

and the behavior of agents understandable. Such network games

include local formation games [21], geodisic utility games [30], and

information passing games [30]. In the directed setting there is

work in discrete choice models of social network formation [40].

However, agents in these models often have complete network

information and no resource bounds. Agents also rarely consider

both structure and attributes in their edge formation decisions.

Best Response Strategies: Agents taking best response strategies
make optimal selfish decisions while making assumptions about

others’ strategies. Much of the work on best response for network

formation [23, 18, 24] builds off the work of Bala and Goyal [5].

They present network formation as a non-cooperative game where

agents’ actions lead to equilibrium social networks with simple

structures. We also present a non-cooperative game for network

formation, but our agents do not make assumptions about others’

strategies, and only observe the current state of the network.

Bounded Rationality: Bounded rationality, first detailed by Simon

[47], has been studied in a variety of contexts. It is known that in

general agents violate rationality axioms [39] and do not maximize

expected utility [46]. Based on this prior work we consider agents

who do not perfectlymaximize expected utility. Our baselinemodels

(detailed in [16] and [37]) also attempt to incorporate bounded

rationality. In both, agents consider the formation of only one edge

in each iteration; so while knowledge is indeed limited, the choice

of this edge is not strategic.

Triangle Closing: Triadic closure is a commonly observed phe-

nomena in social networks [27], and prior network formation mod-

els have captured this property. The clique merging model of [43]

produces networks with large numbers of triangles. Random walk

models such as the process described in [33] also generate networks

with high triangle count, however this model is not attributed.

Attribute Assortativity: Many network formation models capture

homophilic preferences, and this area has been surveyed [42]. Some

[25, 9] follow empirical methods for estimating the homophilic

preferences of agents in network formation. Others [17] follow

an approach more similar to our own, focusing on thresholds of

assortativity and the impact on the final network. However, we

seek a process that also involves preferences over structure. In real

world networks, some people may prefer tightly knit groups with

high trust, whereas others may prefer to connect to a variety of

people, maximizing social capital [12, 27, 11, 10].

3 PROBLEM STATEMENT

We model community formation as an evolutionary game amongst

strategic, boundedly-rational agents. Consider a world with agent

set 𝑉 ; each agent 𝑣 is endowed with immutable attributes 𝜏𝑣 , and a

bounded resource. In this game, each agent seeks to form friend-

ships with other agents, which incur a communication cost. Thus,

agents are constrained to only maintain at most 𝜅 connections. At

any time 𝑡 , there exists an undirected network 𝐺𝑡 = (𝑉 , 𝐸𝑡 ). Due
to the resource constraint, each agent must strategically choose

friendships to maximize their payoff.

Agents have latent preferences in 𝑑 dimensions. We model this

by a 𝑑 dimensional strategy space 𝑆 . As in ecological games, we

assume that for each of the𝑑 dimensions, agents pick a pure strategy

such as homophily or heterophily. We assume a population-level

mixing of strategies 𝜋 over the 𝑑 dimensions. Thus, each agent 𝑣

has a strategy 𝑠𝑣 ∈ 𝑆 with each dimension sampled according to 𝜋 .

Each agent 𝑣 chooses actions to maximize their payoff. The pay-

off of each action is determined by 𝑣 ’s strategy 𝑠𝑣 and the state of

the network 𝐺𝑡 . After each agent simultaneously modifies their

network by taking an action during time 𝑡 , the resultant network

is 𝐺𝑡+1. We ask: will a local edge-formation process with strate-

gic, resource-bounded agents converge to a network with stable

community properties at some time 𝑡∗ ?

4 ESSENTIAL AGENT PROPERTIES

We determine that the following agent properties are essential to

future work in ecologically-valid, strategic community formation:

Resource-Constrained Agents: Maintaining active connections

is costly, and humans are cognitively constrained [19]. We intro-

duce a limit on agents’ social interactions by way of a degree

constraint 𝜅 — agents can only maintain 𝜅-many edges at a time.

We implement this by considering each agent to have a social in-

teraction budget of 1, where each edge has cost 𝑐 = 1/𝜅 . Thus, we
require that the following inequality must be true for all agents

𝑣 ∈ 𝑉 : 𝑐 ∗ 𝛿 (𝑣) ≤ 1, where 𝛿 (𝑣) is the degree of agent 𝑣 . Agents
assign no inherent utility to any “leftover” budget.

Local Network Knowledge: In social networks, agents do not

know global network properties (e.g., the total number of agents,

the distance between themselves and distant agents), so we ensure

that they only have knowledge of local structure. An agent may

propose to form an edge with another agent if there is a path of

length two between them, or if they were introduced by chance.

We adopt this restriction because it represents triadic closure [32],

an agent’s connection introducing them to their neighbors.
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Core Strategy Space: People consider many factors when choos-

ing friends. However, prior work suggests that two factors: ho-

mophily (befriending similar others) [13, 14, 36, 32] and local

structure (social capital, embeddedness) [11, 10, 26] are both es-

sential strategic considerations. Thus, when forming friendships,

our agents consider both the attribute of the friend, and the local

network structure induced by the friendship.

We show through ablations that the properties detailed above are

essential to our model. The expressive and diverse communities our

model produces are not possible without each of these elements.

5 COMMUNITY FORMATION MODEL

In this section we give a detailed model description. We begin with

the strategy space and the strategies’ utility functions. We give a

high level description of the network formation process as well as

a pseudo-code description. Finally we give the stopping criteria

for our model and illustrate its validity. We introduce considerable

notation in this section which is summarized in Table 1.

Table 1: Summary of Notation

Notation Description

𝑆 𝑑 dimensional strategy space

𝜋 Population-level mixing distribution over 𝑆

𝑠𝑣 ∼ 𝜋 Agent 𝑣 ’s private strategy drawn using 𝜋

𝜏𝑣 Immutable attribute vector of agent 𝑣

𝛿 (𝑣) Degree of agent 𝑣

𝜅 Degree constraint for all agents

𝑁 (𝑣) Set of nodes in the neighborhood of 𝑣

𝑁𝜏 (𝑣) Set of nodes in 𝑁 (𝑣) with the same type as 𝑣

𝑈𝑣 Utility agent 𝑣 derives from 𝑁 (𝑣)
Δ𝑣 Number of triangles 𝑣 is part of

𝐼𝑣 Number independent nodes in 𝑁 (𝑣)
𝑑𝐺 (𝑢, 𝑣) Distance between nodes 𝑢 and 𝑣 in graph 𝐺

𝑃𝑅𝑣 Set of nodes who have proposed to 𝑣

We consider population-level strategy mixing. We assume all

agents are present at 𝑡 = 0 (no addition or deletion of nodes). For

|𝑉 |-many agents, the network is parameterized by𝜅, 𝜋,Ω. We define

𝜅 as the maximum degree of any agent.

In this paper we consider two dimensions: attributes and local

structure; and exactly two pure strategies in each dimension: ho-

mophily (befriend similar), heterophily (befriend dissimilar) for

attributes and social capital (maximize the breadth of friends), em-

beddedness (maximize the number of mutual friends) for local

structure. Since our strategy space has two dimensions (𝑑 = 2), the

population mixing distribution has two parameters, 𝜋 = (𝛼, 𝛽).
We define𝛼 as the proportion of agents adopting homophily, 1−𝛼

as heterophily, 𝛽 as the proportion of agents adopting social capital,

1 − 𝛽 as embeddedness, and Ω as the distribution over immutable

attributes. These parameters 𝛼, 𝛽,Ω are independent. Each agent

𝑣 ∈ 𝑉 is assigned a strategy 𝑠𝑣 and type 𝜏𝑣 at 𝑡 = 0 according to

parameters 𝛼 , 𝛽 , and Ω. In subsequent iterations, each agent 𝑣 uses

this strategy 𝑠𝑣 as well as the current state of the network 𝐺𝑡 to

make changes to their neighborhood. The type of each agent 𝜏𝑣

Table 2: Utility functions𝑈 𝑎
𝑣 and𝑈 𝑠

𝑣 for each strategy

Strategy Utility Function Description

𝐻𝑚 |𝑁𝜏 (𝑣) |/𝜅 Neighbors with attribute 𝜏𝑣

𝐻𝑟 |𝑁 (𝑣) \ 𝑁𝜏 (𝑣) |/𝜅 Neighbors without attribute 𝜏𝑣

𝐿𝑒 Δ𝑣/
(𝜅
2

)
Triangles where 𝑣 is a vertex

𝐿𝑐 𝐼𝑣/𝜅 Independent neighbors of 𝑣

is public, but the strategy 𝑠𝑣 is private. For tractability we assume

that there are only two categorical values of 𝜏 .

5.1 Strategy Space

We denote the set of attribute strategies 𝐻 and structural strategies

𝐿. Each agent has strategy 𝑠𝑣 = (𝑠𝑎𝑣 , 𝑠𝑠𝑣) drawn from 𝐻 × 𝐿. The

homophilic strategy is denoted 𝐻𝑚 and the heterophilic strategy

𝐻𝑟 . Homophilic agent 𝑣 derives attribute utility from neighbors of

the same type as 𝑣 . Heterophilic agent 𝑣 derives attribute utility

from neighbors of a different type. Let 𝑁𝜏 (𝑣) = {𝑢 |𝑢 ∈ 𝑁 (𝑣), 𝜏𝑢 =

𝜏𝑣}, the set of 𝑣 ’s neighbors who have the same type as 𝑣 . Then

𝑁 (𝑣) \ 𝑁𝜏 (𝑣) gives the set of neighbors of 𝑣 of a different type.
We denote the strategy of embedded agents 𝐿𝑒 and that of social

capital agents 𝐿𝑐 . Agent 𝑣 desiring embeddedness derives structural

utility from a connection to 𝑢 if the edge between 𝑣 and 𝑢 is part of

one or more triangles in the network. An agent 𝑣 desiring social

capital gets structural utility from neighbors who are disconnected.

LetΔ𝑣 = |{(𝑢,𝑤) |𝑢,𝑤 ∈ 𝑁 (𝑣), (𝑢,𝑤) ∈ 𝐸}|, the number of triangles

where 𝑣 is a vertex. Additionally let 𝐼𝑣 = |{𝑢 |𝑢 ∈ 𝑁 (𝑣), �𝑤 s.t.𝑤 ∈
𝑁 (𝑣), (𝑢,𝑤) ∈ 𝐸}|, the number of components of size 1 in the

subgraph induced by 𝑣 ’s neighborhood 𝑁 (𝑣) on 𝐺 .
We give detailed utility functions in Table 2. Agent 𝑣 ’s strategy

𝑠𝑣 is drawn from {𝐻𝑚, 𝐻𝑟 } × {𝐿𝑒 , 𝐿𝑐 }. The aggregate utility of 𝑣

is the sum of the attribute and structural utility, 𝑈𝑣 = 𝑈 𝑎
𝑣 + 𝑈 𝑠

𝑣 .

We normalize attribute utilities and social capital utility by 𝜅, the

degree constraint for all nodes, and the embedded utility by

(𝜅
2

)
to

ensure they all remain in [0, 1]. Thus,𝑈𝑣 ∈ [0, 2], for all agents 𝑣 .

5.2 Model Description

Consider the network at iteration 𝑡 , 𝐺𝑡 = (𝑉 , 𝐸𝑡 ), with agents 𝑉

and edges 𝐸𝑡 . At time 𝐺0 we have a trivial network, 𝐸0 = ∅. We

drop the 𝑡 subscript where the meaning is clear. Each iteration

consists of two stages: first the proposal stage, and then the action

stage. Agents within each stage move simultaneously. We give the

algorithm details below, followed by a simplified algorithm. We

visually depict the algorithm in Figure 1.

1) Proposal Stage: Let 𝑑𝐺 (𝑢, 𝑣) be the distance between 𝑢 and 𝑣

in 𝐺 . For each agent 𝑣 ∈ 𝑉 , an agent 𝑢 ∈ 𝑉 \ {𝑣} is revealed to 𝑣

uniformly at random, representing a chance encounter. Then 𝑣

may choose to propose to one agent in {𝑢} ∪ {𝑤 |𝑑𝐺 (𝑣,𝑤) = 2}.
We will denote the degree of agent 𝑣 as 𝛿 (𝑣). Agents may only

propose if their degree is less than the constraint; or 𝛿 (𝑣) < 𝜅.

Because 𝑣 may propose to at most one agent, they will propose

to the agent giving the maximum utility.
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𝑣

𝑁 (𝑣)

Figure 1a: Proposal stage at time 𝑡

𝑤

𝑢 𝑣

𝑁 (𝑣)

Figure 1b: Action stage at time 𝑡

𝑤

𝑢 𝑣

𝑁 (𝑣)

Figure 1c: Network at time 𝑡 + 1

𝑤

𝑢

Figure 1: Depiction of our proposal stage at time 𝑡 , action stage at time 𝑡 , and the network at time 𝑡 + 1 following these stages.

Node shape represents agent attribute 𝜏𝑣 ; color is for attribute emphasis for relevant nodes. Each agent makes a proposal and

responds with an action at time 𝑡 ; we omit most of these for clarity. At time 𝑡 , agent 𝑣 proposes to 𝑢, the random revelation.

Agent𝑤 proposes to 𝑣 . During the action stage, agent 𝑣 does not add (𝑤, 𝑣) while 𝑢 agrees to add (𝑢, 𝑣). Thus 𝑢 is now in 𝑁 (𝑣).

Algorithm 1: Proposal and Action Stages

Data: 𝐺 the current network

Result: 𝐺 ′ the network after actions

1 𝑃 an empty map from 𝑉 → 𝑉 ;

// Proposal Stage

2 for 𝑣 ∈ 𝑉 do

3 𝐶 ← the set of agents 𝑣 may propose to;

4 𝐶max ← the agent in 𝐶 that will maximize 𝑣 ’s utility;

5 𝑈max ← 𝑣 ’s utility change after addition of (𝑣,𝐶max);
6 if 𝑈max > 0 and 𝛿 (𝑣) < 𝜅 then

7 𝑃 (𝑣) ← 𝐶max // 𝑣 will propose to 𝐶max

// Action Stage

8 𝐵
delete

, 𝐵
add
← 𝑔𝑒𝑡𝐵𝑒𝑠𝑡𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (𝐺, 𝑃) // get highest

utility edge deletion and addition, assuming
each proposal is accepted

9 for 𝑣 ∈ 𝑉 do

10 if 𝛿 (𝑣) < 𝜅 − 1 and adding (𝑣, 𝐵add (𝑣)) increases 𝑣 ’s
utility more than deleting (𝑣, 𝐵delete (𝑣)) then

11 Add (𝑣, 𝐵
add
(𝑣)) to 𝐸;

12 else if Deleting (𝑣, 𝐵delete (𝑣)) increases 𝑣 ’s utility then

13 Remove (𝑣, 𝐵
delete

(𝑣)) from 𝐸;

2) Action Stage: The choice set for agent 𝑣 comprises the nodes

who proposed to 𝑣 and current neighbors of 𝑣 ; potential actions

are proposal acceptance, edge deletion, or no action. If an agent

has degree 𝛿 (𝑣) ≥ 𝜅 − 1 and has made a proposal, we will require

they take a cost non-increasing action. Otherwise they will select

whichever action maximizes their utility in this iteration, includ-

ing doing nothing. If an agent has made a proposal, they assume

their proposal has been accepted in the action stage. Each agent

selects an action, and after every agent has selected, all agents

execute their choices simultaneously. In a given iteration each

agent may take one action.

5.3 Stopping Criteria

We define a triad of agents 𝑢, 𝑣,𝑤 ∈ 𝑉 as stable if the subgraph

induced by 𝑢, 𝑣,𝑤 is of maximum utility for all agents; i.e., no agent
would choose to drop an edge. We stop our network formation

simulations when the number of stable triads steadies.

Definition 5.1 (Stable triads). Let𝐺 [𝑢, 𝑣,𝑤] be the subgraph of𝐺

induced by vertices 𝑢, 𝑣,𝑤 ∈ 𝑉 . Agents 𝑢, 𝑣,𝑤 form a stable triad if

and only if one of the following cases is true (see Figure 2):

(1) 𝑠𝑢 = 𝑠𝑣 = 𝑠𝑤 = (𝐿𝑒 , 𝐻𝑚) and 𝜏𝑢 = 𝜏𝑣 = 𝜏𝑤 . The fully

connected subgraph induced by 𝑢, 𝑣 ,𝑤 𝐺 [𝑢, 𝑣,𝑤], is stable.
A triple of agents with a preference for embeddedness and

homophily of the same type achieve maximum utility from

their connection.

(2) 𝑠𝑢 = 𝑠𝑣 = 𝑠𝑤 = (𝐿𝑐 , 𝐻𝑚) and 𝜏𝑢 = 𝜏𝑣 = 𝜏𝑤 . Then 𝐺 [𝑢, 𝑣,𝑤]
with (𝑢, 𝑣), (𝑢,𝑤) ∈ 𝐸, (𝑣,𝑤) ∉ 𝐸 is stable. A triple of ho-

mophilic agents with a preference for social capital who are

on a line is also stable as 𝑣 connecting to𝑤 would decrease

the utility for all agents.

(3) 𝑠𝑢 = 𝑠𝑣 = 𝑠𝑤 = (𝐿𝑐 , 𝐻𝑟 ). Suppose 𝜏𝑣 = 𝜏𝑤 and 𝜏𝑢 ≠ 𝜏𝑣, 𝜏𝑤 .

Then 𝐺 [𝑢, 𝑣,𝑤] with (𝑢, 𝑣), (𝑢,𝑤) ∈ 𝐸, (𝑣,𝑤) ∉ 𝐸 is stable.

Similar to the prior case, a triple of heterophilic social capital

agents on a line is also stable.

𝑣

𝑢𝑤

𝐿𝑒 , 𝐻𝑚

𝑣

𝑢𝑤

𝐿𝑐 , 𝐻𝑚
𝑣

𝑢𝑤

𝐿𝑐 , 𝐻𝑟

Figure 2: Three cases of stable triads— agents 𝑢, 𝑣,𝑤 .

Theorem 5.2. The number of stable triads in 𝐺 is non-decreasing.

Proof. By definition, the subgraph induced by a stable triad

contains nodes at maximum utility. Thus, alteration of the triad by

edge addition or deletion would strictly harm all agents. Note that
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for 𝑠𝑢 , 𝑠𝑣 ∈ {𝐻𝑚} ×𝐿 and 𝜏𝑢 = 𝜏𝑣 , if (𝑢, 𝑣) ∈ 𝐸 then removing (𝑢, 𝑣)
decreases |𝑁𝜏 (𝑢) | by 1 for 𝑢 and decreases |𝑁𝜏 (𝑣) | by 1 for 𝑣 .

For the following cases we consider any stable triad𝑢, 𝑣,𝑤 . When

we consider alteration of one edge (e.g., (u,v)), the proof extends to
any equivalent edge (e.g., (u,w)).

Case 1: 𝑠𝑢 = 𝑠𝑣 = 𝑠𝑤 = (𝐿𝑒 , 𝐻𝑚). Let us consider the deletion
of (𝑢, 𝑣). As 𝜏𝑢 = 𝜏𝑣 this gives a reduction of

1

𝜅 in 𝑈 𝑎
𝑢 and 𝑈 𝑎

𝑣 .

Furthermore this must decrease Δ𝑢 , Δ𝑣 , and Δ𝑤 .

Case 2: 𝑠𝑢 = 𝑠𝑣 = 𝑠𝑤 = (𝐿𝑐 , 𝐻𝑚) or 𝑠𝑢 = 𝑠𝑣 = 𝑠𝑤 = (𝐿𝑐 , 𝐻𝑟 ). The
heterophily case is symmetric. Consider the deletion of (𝑢, 𝑣). As
𝜏𝑢 = 𝜏𝑣 this gives a

1

𝜅 reduction in𝑈 𝑎
𝑢 and𝑈 𝑎

𝑣 .

Suppose there exists an agent 𝑥 such that (𝑢, 𝑥), (𝑣, 𝑥) ∈ 𝐸. Delet-
ing (𝑢, 𝑣) increases the structural utility of 𝑢 by at most

1

𝜅 as 𝑥

may now be an isolated neighbor of 𝑢. Because agents may make

at most two connections in an iteration, if such a 𝑥 were to exist

then either (𝑢, 𝑥) was added first, (𝑣, 𝑥) was added first or (𝑢, 𝑥)
and (𝑣, 𝑥) were added simultaneously. If WLOG (𝑢, 𝑥) was added
first then (𝑣, 𝑥) would provide 𝑣 with at most

1

𝜅 attribute utility and

reduce structural utility by the same. Then it must be that (𝑢, 𝑥) and
(𝑣, 𝑥) are added simultaneously. However, because agents assume

their proposals are accepted when evaluating candidates, there is

no expected gain in𝑈𝑢 or𝑈𝑣 . Thus no such 𝑥 may exist.

Next we consider the addition of (𝑣,𝑤). Because 𝑣 and𝑤 are both

connected to 𝑢, 𝐼𝑣 and 𝐼𝑤 would both be reduced by the addition of

(𝑣,𝑤), reducing𝑈 𝑠
𝑣 ,𝑈

𝑠
𝑤 , and𝑈

𝑠
𝑢 . □

As the number of stable triads in 𝐺 is non-decreasing and 𝐺

is finite, the number of stable triads must eventually converge. In

simulation we consider the stable triad count to stabilize when

standard deviation of the prior 𝜅 iterations is less than some small

𝜀. We choose 𝜅-many iterations because this would allow for each

agent to completely change their neighborhood.

Though we do not prove this, we conjecture that convergence

occurs in 𝑂 (poly( |𝑉 |, 𝜅)). Consider a network with countably in-

finite vertices. If 𝜅 = 1, it could not be the case that the network

does not converge; in fact it would converge very quickly. Even

for larger values of 𝜅, maximum degree agents in stable triads are

unlikely to continually switch between neighbors, as stable triad

neighbors grant high payoff. By results from the coupon collec-

tor’s problem, because of uniformly random revelations, agents will

quickly find neighbors who grant them attribute utility. In practice

our simulations do not require a large number of iterations.

6 SIMULATIONS

In this section we describe our first contribution: formation of

evolutionarily stable communities. We explore the parameter space

via simulation to demonstrate ourmodel’s ability to create networks

with varied stable community structures.

In order to effectively explore the parameter space, we fix some

parameters, while varying others. We use classical sociological

results to fix values for |𝑉 | and 𝜅. From Dunbar [19], people can

maintain active communities of ≈ 150; we fix |𝑉 | = 150 for our

simulations. Dunbar also claims that a person’s 5 strongest connec-

tions are their “support clique”, or core group of emotional support.

The closest 15 are the “sympathy group”, who provide high cost

support and time. We are interested in active relationships, though

not necessarily restricted to only the closest connections. Thus

we fix 𝜅 = 10. We also fix Ω as a uniform distribution over two

attributes for simplicity. We independently vary 𝛼 and 𝛽 over a

9 × 9 parameter space grid: [0, 1] × [0, 1]. These parameters most

directly control community structure and assortativity. To account

for variation due to chance encounters in the proposal stage, we

run each grid cell ten times and report the average metrics.

Triangle count depends strongly on chosen parameters. As ex-

pected, when a higher proportion of agents follow the embedded-

ness and homophily strategies, more triangles are produced (Figure

3a). Embedded agents’ utility functions cause them to directly maxi-

mize triangle count. The correlation with homophilous preferences
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(f) Terminating iteration

Figure 3: Metrics over parameter space. Subfigure (b) shows that the

proportion of social capital agents modulates the rate of change of

the assortativity coefficient. Subfigures (c) and (d) show a bowl shape;

stable communities form at the corners of our parameter space but

not when embeddedness and heterophily are both high. The number

of communities in (e) correlates strongly with the degree of embed-

dedness as agents desiring embeddedness formmore neighborhoods

that are closely knit.
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Table 3: Ablation fits for two small villages with good stan-

dard model fit (top) and bad standard model fit (bottom).

Village 6 models Best 𝛼 Best 𝛽 Loss

No resource constraint 0.2500 1.0000 0.1770

Global knowledge 0.3750 0.5000 0.0843

Ignore attribute 0.3750 0.5000 0.0658

Ignore structure 0.3750 0.5000 0.2689

Standard (no ablation) 0.1875 0.3750 0.0419

Village 10 models Best 𝛼 Best 𝛽 Loss

No resource constraint 0.5000 1.0000 0.2643

Global knowledge 0.5000 0.5000 0.1863

Ignore attribute 0.2500 0.1250 0.0866

Ignore structure 0.3750 0.5000 0.2552

Standard (no ablation) 0.4375 0.2500 0.1228

is due to our use of a binary attribute — when two agents with het-

erophilous preferences connect on the basis of type, a third agent

may give attribute utility to at most one of these agents.

Assortativity coefficient (Figure 3b) depends primarily on the

level of homophily, which follows from the explicit optimization for

assortativity and disassortativity by homophilous and heterophilous

agents respectively. There is a weaker inverse correlation in the

magnitude of the assortativity coefficient based on 𝛽 . This may be

due to agents preferring social capital deriving utility from any

disconnected agent regardless of assortativity.

Due to the high variance in topology which results from dif-

ferent parameter values, our model can produce a wide variety

of community structures. When agents prefer embeddedness the

network forms cliques which are loosely connected. This roughly

matches the idea of the strength of weak ties [27] wherein agents

may form strong, tightly knit communities which are more loosely

connected. Similarly, higher preference for homophily may create

more tightly knit communities as cliques of uniform type may more

easily form. This is reflected by the number of communities (Figure

3e) detected by the Louvain algorithm increasing with preference

for embeddedness and homophily.

7 ABLATIONS

In this section we present results for our second contribution: iden-

tification of necessary agent behaviors. Our model relies upon

boundedly-rational, resource constrained agents pursuing attribute

and structural objectives to produce complex communities. Thus

we utilize ablation tests to determine the necessity of each of these

properties. Each ablation test removes only one property.

No resource constraint: Removal of resource constraint. Effec-

tively, 𝜅 = |𝑉 | − 1; an agent can form as many edges as possible.

Global knowledge: Removal of local knowledge constraint. Agents

are able to propose to anyone in the network, not just those

within distance two and those who are revealed to them.

Ignore attribute: Removal of payoff from homophily and het-

erophily. Agents solely care about structural properties.

Ignore structure: Removal of payoff from social capital and em-

beddedness. Agents solely care about neighbors’ attributes.

(a) No Resource Constraint (b) Global Knowledge

(c) Ignore Attribute (d) Ignore Structure

Figure 4: Ablation networks fit to Village 6. Color represents

attribute. Notice the dense network in (a) due to lack of budget.

Refer to Figure 5(a) and 5(b) for the actual network and our fit.

Our ablations reveal the strength of our ecologically valid model

(see Table 3, ablation networks in Figure 4; original network and our

model fit in Figure 5 ). The standard model generally outperforms

the ablation models in both Village 6 (where our standard model

achieves low loss) and Village 10 (where our standard model loss is

higher). The standard model is outperformed only by the ablation

where attribute is ignored for Village 10.

Here, the lower loss comes from the ablation model more accu-

rately matching the distribution of assortativity coefficients. The

better performance of the ablation is possibly due to the model’s

ability to produce agent neighborhoods with mixed attributes. Our

standard model assigns each agent a pure strategy of homophily or

heterophily, which makes achieving a mixed neighborhood diffi-

cult. Though agents in the global knowledge ablation have more

information, it doesn’t capture the fact that individuals in real net-

works are not omniscient, and likely make friends through mutual

connections. Removing resource constraints produces a more dense

network than real networks since individuals in real networks do

not have the resources to befriend everyone. Similarly, ignoring

structure does not produce sufficiently dense neighborhoods.

Further modeling subtleties may be introduced to increase our

accuracy. A strict preference per agent for structure or attribute is

likely too coarse; agents may exhibit different preferences over dif-

ferent subsets of the population. A vector of attributes would more

accurately capture true attribute spaces with utility derived from

vector similarity or dissimilarity. Agents could have homophilous

or heterophilous preferences over different subsets of the attributes.

8 EXPERIMENTS

In this section we discuss our third contribution: interpretability.

We evaluate our model on real network datasets and compare our
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results to baselines. Unlike the baseline models, we are able to

identify population-level mixing proportions over strategies which

help us explain and predict the network outcome.

8.1 Dataset

We carefully chose a network dataset that best captured the in-

tended use of our model. We require that a network be: attributed,

undirected, and social, with active, voluntary edges. The village

microfinance dataset collected by Banerjee et al. [7] meets our in-

clusion criteria. We use this dataset to demonstrate that our model

can be fit to 75 unique social attributed networks.

The village network data comes from a survey of social net-

works in 75 Indian villages. The village networks are disjoint and

the dataset contains demographic information for each household.

We choose to observe the network at the level of the household

rather than the individual as survey eligibility was determined by

the presence of a head of household finances. Additionally this

contraction avoids spurious homophily, heterophily, and triangles.

Banerjee et al. [6] provide twelve edge-sets for each of the 75

villages, corresponding to household survey questions (e.g., who
would you borrow money from, give advice to, etc.). Though the

questions are directed, the authors provide undirected edges. We

desire edges that encompass a wide range of social interactions, as

our model is a general social network formation model. To ensure

this, we consider the union over all edge-sets minus any edges that

involve exchange of money or goods. We exclude monetary edges

because these are not purely social interactions; they require some

resources outside what is required for friendship.

We use the survey data to assign household attributes. We as-

sume that number of rooms in a home is a proxy for wealth. We

normalize this by dividing the number of rooms by the square root

of number of beds + 1 [29]. We desire a binary attribute for wealth

for each household, so we categorize households as having ≤ 2

normalized beds, or > 2. We choose this cutoff because it splits the

households most evenly into two categories over all villages.

8.2 Baseline Models

Here we describe the baseline models; we attempted a best faith

implementation of both. While Mele [37] provided code, neither it

nor the required packages were documented enough to utilize.

Mele [37] This community formation model places attributed

agents in unobserved communities at 𝑡 = 0. In each iteration, a

pair of agents is selected randomly with probability depending

on network structure, community membership, and agents’ at-

tributes. Agents keep or create an edge if the sum of their utilities

for the edge is positive. Some random variation is introduced to

model unobserved strategies. The utility of an agent is dependent

on the network structure, community membership, and agents’

attributes. The paper provides six model variations; results show

that one performs best, so we utilize this model for our analysis.

Christakis et. al. [16] This community formation model has

agents that use a utility function parameterized by: a prefer-

ence over attributes, for homophily, for the number of common

connections, for distance in the network, and over the value of

an observable characteristic. Agents have identical preferences.

One potential edge is introduced in each iteration; if the utility

for the edge is positive for both agents then the edge is formed.

Both baselines, like our model, consider attribute and structure

in formation of edges. In contrast to our own model, both baselines

lack resource constraints and have hard to explain parameters.

8.3 Evaluation Metrics

We refer to an observed network as 𝐺𝑑
, and use 𝐺𝑑

when refer-

ring to a simulated network which attempts to replicate 𝐺𝑑
. Here

we describe the metric used to evaluate this replication. For each

vertex we calculate attribute assortativity 𝑎𝑖 and local clustering

coefficient 𝑐𝑖 . The assortativity coefficient 𝑎𝑖 indicates the level

of homophily or heterophily exhibited by a vertex 𝑣 , and is given

by 𝑎𝑖 = 1

2

(
2𝑁 𝜏 (𝑣)−𝛿 (𝑣)

𝛿 (𝑣) + 1
)
. An assortativity coefficient of one

indicates complete homophily and zero complete heterophily. The

clustering coefficient of a vertex 𝑣 is given by
Δ𝑣

𝛿 (𝑣) (𝛿 (𝑣)−1) . For

both networks𝐺𝑑
and𝐺𝑑

, we calculate a distribution of these pairs

(𝑎𝑖 , 𝑐𝑖 ) and a weight 𝑝𝑖 which corresponds to the relative frequency

of (𝑎𝑖 , 𝑐𝑖 ) in each network. We utilize the 1-Wasserstein distance as

a measure of similarity between distributions. The distance between

points in the distribution is given by the L-2 (Euclidean) norm.

We also include a global component in our loss metric to ensure

good fit on global assortativity and edge density. A network with

many edges could be similar in distribution to one with few edges

if they have similar local clustering coefficients. The global compo-

nent alleviates this issue. Thus, we compute the difference between

triangle count and assortativity coefficient by a symmetric mean

absolute percentage error, and take the average of these errors. This

makes up the global component. Note that very sparse networks

have undefined clustering coefficients which we set to zero. We

report the average of distributional and global components as the

loss between the simulated 𝐺𝑑
and the observed network 𝐺𝑑

.

8.4 Parameter Fitting

Given an attributed network dataset, some parameters are defined

by the dataset. Our model has five free parameters: |𝑉 |, 𝜅, Ω, 𝛼 ,
and 𝛽 . We look only at static datasets, so |𝑉 | and Ω are fixed. The

remaining three parameters need to be discovered.

We use grid search to discover the best fitting 𝜅, 𝛼 , and 𝛽 for

𝐺𝑑
. We consider 75 village networks, and we desire a shared 𝜅 over

all villages, since 𝜅 represents a cognitive constraint on the ability

of individuals to form edges. To achieve this, we run a coarse grid

search to determine the best-fitting 𝜅 ∈ {5, 10, 15}. Then, using this
𝜅 , we find the best fitting 𝛼 and 𝛽 on a finer grid. The parameters in

the baseline models [37, 16] are neither explanatory nor bounded.

To fit them, we execute a random search over a plausible parameter

space informed by the reported parameters in the papers and then

a finer search over the discovered best-fitting space. We utilize our

evaluation metrics (Section 8.3) to determine best fit.

8.5 Our Experimental Results

We now present the results of our model fitting, and compare to the

baseline models. We executed all simulations five times, computed

the losses from these networks, and then averaged the losses.
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Table 4: Village Microfinance Fitting Results. We include the

best-fitting (top half) and worst-fitting (bottom half) villages

in order of increasing loss. We also include Village 10 for the

baseline comparisons.

Village |𝑉 | Assort. Tri. Best 𝛼 Best 𝛽 Loss

4 239 -0.031 154 0.4375 0.5625 0.027

3 292 0.001 189 0.3750 0.5000 0.037

8 94 0.013 165 0.3125 0.2500 0.041

6 114 -0.017 107 0.1875 0.3750 0.042

2 195 0.102 113 0.3750 0.5625 0.043

10 77 0.041 152 0.2500 0.4375 0.123

75 172 0.123 661 0.3750 0.0000 0.177

70 205 0.048 860 0.3125 0.0000 0.182

52 327 0.040 1698 0.5625 0.0000 0.226

51 251 0.044 1440 0.5626 0.0000 0.233

69 180 0.077 1197 0.5000 0.0000 0.247

We show results from fitting our model to the microfinance

dataset in Figure 4.We only show the five best-fitting and five worst-

fitting villages, along with Village 10, due to space constraints. In

our initial coarse-grained fitting, we found the optimal 𝜅 value was

10. Note that since we also ran our simulations with 𝜅 = 10, Figure

3 gives an idea of how metrics change with values of 𝛼 and 𝛽 .

Recall that 𝛼 and 𝛽 give the proportion of homophilic and social

capital agents respectively. We expect that for villages with high

assortativity, 𝛼 will be high, and for villages with a high proportion

of triangles compared to network size, 𝛽 will be low. Reviewing

Figures 3a and 3b reminds us that 𝛼 and 𝛽 do not cause independent

variation in triangle count and assortativity, so we observe some

seemingly “sub-optimal” values of 𝛼 and 𝛽 . For example, note the

five worst-fit villages. They all have been fit with a 𝛽 value of

0.000, indicating a high triangle count. Indeed, the triangle counts

for these villages are high. However, the 𝛼 value does not vary as

predictably with assortativity, leading to higher loss values.

8.6 Baseline Models’ Experimental Results

Table 5: Comparison to Baseline Model Fitting Results. We

are unable to fit baselines to all villages due to long running

times. We report mean (X) and standard deviation (Y) in the

last row. (* statistics reported for 30 villages)

Village Our Loss Chris. [16] Loss Mele [37] Loss

6 0.042 0.168 0.601

10 0.123 0.135 0.503

All 𝑋 (±𝑌 ) 0.110 ± 0.042 0.139 ± 0.021* –

We compare our model’s fit to the baselines for a small village

our model fit well (Village 6), and a small village our model fit

less well (Village 10). We were unable to fit all villages because

the running time of the baseline models was prohibitively long. To

(locally) complete a search over 200 parameter sets to produce the

networks in Figure 5, our simulation takes 45 minutes, Christakis’s

40 minutes, and Mele’s over 14 hours. We show results for Village

6 in Figure 5, and full loss results in Table 5. Though the Christakis

(a) Actual Network (b) Our Simulation

(c) Christakis Simulation (d) Mele Simulation

Figure 5: Comparison of actual network (Village 6) to our network

and two baseline models. Color represents the attribute. Our model

performs best, followed by Christakis [16] and then Mele [37].

model performs fairly well (Figure 5c), the resulting network is

too dense and underestimates the number of isolated nodes in

Figure 5a. On the other hand, the Mele model performs poorly,

clearly underestimating the density and triangle count of the true

network, while properly capturing the isolated nodes. Note that the

Christakis model is parameterized by seven variables, and the Mele

model by nine. It is difficult to make claims regarding populations

of people using these parameter sets, even if they are well fit.

9 LIMITATIONS AND FUTUREWORK

Scalability: Agents in our model consider candidates two hops

away; this can be as many as 𝜅2 candidates. Scalability of the

model could be improved by restricting this candidate set. An

implementation optimizing for sparse matrix operations could

also improve computation time, especially on very large datasets.

Attribute dimension: Weonly consider agentswith a single scalar

categorical attribute. This could be resolved by increasing the

dimension of attribute preferences as noted in Section 7.

Strategy space: Our definition of the social capital structural util-

ity function (requiring completely disconnected neighbors) may

be overly strict, and make it difficult for social capital agents

to achieve high utility. Instead, a modification where utility is

derived per connected component in the neighborhood induced

subgraph may more accurately capture real payoffs.

Convergence rate: We stop our network formation simulations

when the stable triad count stabilizes (see Section 5.3). While we

prove that this occurs in a finite number of iterations, we only

conjecture a convergence rate. Determining when the probability

of substantial structural change is low would be a stronger result.
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10 CONCLUSION

We present an ecologically valid model of community formation

with boundedly rational, attributed agents. The agents can maintain

a limited number of friendships, and have local network knowl-

edge. They employ core strategies related to local network structure

and preference for homophily to form friendships. We consider a

population-level mixing of strategies, including attribute and struc-

tural preferences. Every parameter value in ourmodel is meaningful

— a particular choice of 𝛼 (homophily), 𝛽 (social capital), 𝜔 (type

distribution), and 𝜅 (resource constraint) is a statement on the pref-

erences of the population. We prove that the number of stable triads

in our network converges; thus, our network must become struc-

turally stable. We show via simulation that this convergence occurs

quickly in practice. Our model is well-fit to the observed networks,

and ablations demonstrate ecological validity. Our model differs

from the prior work in that agent behaviors are ecologically valid

and interpretable. The significance of our ecologically valid model

lies in creating counterfactual scenarios and in examining policy

interventions such as those designed to embed people in different

parts of a social network [15].
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