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Abstract
Many online marketplaces personalize prices based on consumer

attributes. Since these prices are private, consumers may be un-

aware that they have spent more on a good than the lowest possible

price, and cannot easily take action to pay less. In this paper, we in-

troduce a fairness-centered exchange system that takes advantage

of personalized pricing, while still allowing consumers to individ-

ually benefit. Our system produces a matching of consumers to

promote trading; the lower-paying consumer buys the good for the

higher-paying consumer for some fee. We explore various modeling

choices and fairness targets to determine which schema will leave

consumers best off, while also earning revenue for the system itself.

We show that when consumers individually negotiate the transac-

tion price, and our fairness objective is to minimize mean net cost,

we are able to achieve the most fair outcomes. Conversely, when

transaction prices are centrally set, consumers are often unwilling

to transact. When price dispersion (or range) is high, the system can

reduce the mean net cost to each individual by 66%, or the mean net

cost to a group by 69%. We find that a high dispersion of original

prices is necessary for our system to be viable. Higher dispersion

can actually lead to decreased net price paid by consumers, and

act as a check against extreme personalization, increasing seller

accountability. Our results provide theoretical evidence that such

a system could improve fairness for consumers while sustaining

itself financially.

CCS Concepts
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1 Introduction
Suppose you and your friend are interested in buying the same pair

of shoes online from the same website. You see the shoes listed for

$60, while your friend sees $50 due to behavioral profiling [21, 28].

If you knew about this price discrepancy, you could ask your

friend to buy the shoes for you, paying them back and throwing in a

few extra dollars so you can both buy the shoes at a lower net price.

Many such online marketplaces employ elements of personalized

pricing [24]. Differential pricing can vary with protected attributes

[49], and fairness to consumers can suffer when personalized pric-

ing is employed [27, 40]. While many consumers are aware of price

personalization, it is difficult to take money-saving actions without

knowing what other consumers are paying.

Fairer prices could be achieved either by sellers implementing

fair pricing algorithms or via consumers’ more active involvement

in improving pricing outcomes. On the seller’s side, prior works

examine fairer pricing algorithms [7, 12, 19, 47, 54]. These methods

still attempt to build revenue maximizing, sometimes personalized,

pricing algorithms while considering some notion of fairness. How-

ever, there is often not a way to enforce seller use of fair pricing

algorithms. Thus, developing tools that promote consumer agency

is key. Using participatory design methods, Richards et al. [43] find

that involving consumers in price-setting and negotiation leads to

increased perceptions of fairness. Other prior work advises users to

change their behaviors, and therefore receive better personalized

prices [32]. Another solution in online setting is coupon trading,

which has been investigated as one means for consumers to get

lower prices [31]. However, none of these methods directly tackle

achieve fairer pricing—allowing consumers to directly financially

benefit without changing underlying behavior. A fairness-aware

trading platform may be able to simultaneously reduce the impact

of personalized pricing and improve fairness.

In this work, we design a fairness-centered exchange system

that allows consumers to trade to reduce the price they pay for

a good online. As part of this system, we design matching and

transaction-price setting procedures that aim to improve fairness.

Figure 1 depicts how the system, market, and consumers interact.
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Figure 1: The relationship between themarket (white square), the system (blue square), and consumers (gray circles). Consumers
enter the market and are offered prices (a). They decide to participate in the exchange system (b). The system assigns a matching,
and prices for these transactions are assigned or decided upon (c). The arrow direction represents the transfer of money. Of
these matched transactions, only those that are mutually beneficial to both agents occur (d). This is determined by each agent’s
utility function.

To achieve our goal of designing an effective fairness-improving

system, we simulate various design choices. With a given matching,

we test two transaction price-setting procedures: centralized,

where the system sets price, and decentralized, where consumers

negotiate (RQ 1). Our system is intended to improve fairness; we

consider four fairness targets for each procedure. The four fairness

targets cover two objectives (the value measured: mean and

variance of cost), and scopes (who it is measured for: individuals

and groups). We investigate which fairness target is most feasible,

or achievable, in our system (RQ 2). To ensure financial viability,

we explore how the system’s revenue is affected by the number of

consumers, the cut the system takes from each transaction, and the

dispersion (or range) of prices initially offered by the market (RQ
3). To conclude we examine a case study on an empirical pricing

distribution modeled in prior work.

We find that decentralized negotiations between consumers and

minimizing the average net price are fairness maximizing. We are

able to decrease the average price paid by 66% when compared to

the market without trades, under a highly dispersed pricing algo-

rithm (producing a wide range of prices). Minimizing average net

price paid per group leads to a 69% decrease in the metric, compared

to a 66% decrease for average net price paid per individual. Minimiz-

ing standard deviation is unsuccessful, leading to increases in the

metric. We find that as dispersion (or range) of prices increases, the

exchange system acts as a more effective counterweight to unfair

pricing. While in the high dispersion case we see a 66% reduction in

average price paid, the medium and low dispersion cases are a 15%

and 0% reduction respectively. As we increase the cut taken by the

system, the system earns more revenue; however, for a sufficiently

high percent taken, system revenue falls as consumers find fees too

high. Our contributions are as follow:

Exchange system design: We design an exchange system that

could feasibly be implemented, financially sustain itself, and does

not require the cooperation of the market. Prior work in this area

has found personalized pricing in different markets [5, 21, 28], and

some has proposed fair pricing algorithms [4, 19, 52–54]. How-

ever, none to our knowledge has proposed an exchange system

to address unfair personalized pricing. In this work we close that

gap—exploring design choices and fairness targets that will lead to

a financially self-sustaining, price-decreasing system.

Opportunities for personalized pricing:We find that even

though personalized pricing can cause monetary loss to consumers,

when properly taken advantage of, it can provide a money-saving

opportunity. While prior work notes personalized pricing can help

some consumers by making certain goods more affordable to them

[16], we design a system that helps all consumers. We show that,

surprisingly, highly dispersed personalized pricing leads to lower

costs for consumers and higher revenue to the system. This finding

emphasizes the strengths of our exchange system design: we do not

require sellers to cooperate by fairly pricing goods. In fact, when

they don’t, it can be beneficial to consumers and creates a measure

of accountability to extreme, unfair personalization.

2 Related Work
Fairness and pricing: Various methods and metrics for fair ma-

chine learning have been proposed, in particular to deal with chal-

lenges of group fairness [1, 2, 9, 50, 51]. In the pricing domain,

unfair pricing and ad delivery caused by online behaviors have

been found by several studies [5, 8, 21, 28] and can result in struc-

tural inequity [60].

This work examines personalized pricing, which stands in con-

trast to flat or fixed pricing. While personalized pricing could lead

to consumer benefit [10], it may also cause certain consumers to

pay much more than others [15], and lead to a perceived feeling

of unfairness [61]. One solution is to redesign pricing algorithms

for fairness. Seminal work on fair pricing [23, 44] examines what

fair pricing is and how consumers may react to various pricing

algorithms by firms. Kallus and Zhou [27] examine how different

markets and concerns (e.g., information asymmetry) inform which

fairness criteria to consider. Grari et al. [19] study fair pricing un-

der adverse selection, balancing actuarial risk with a demographic

parity or equalized odds constraint. Xu et al. [54] explore how im-

posing restrictions on the degree of personalized pricing (i.e., the
price of an object cannot vary more than 𝑥%) can be customized

to balance the needs of both buyers and sellers. The goal of fair

1160



Oh the Prices You’ll See: Designing a Fair Exchange System to Mitigate Personalized Pricing FAccT ’25, June 23–26, 2025, Athens, Greece

pricing literature is to create fair algorithms that a seller can use

while still achieving high profits.

While this approach could achieve lower prices for consumers

if deployed, this assumes the ability and willingness of a seller to

do so. To mitigate this issue, we design a solution to unfair pric-

ing without directly requiring cooperation from the seller. Some

work has taken this approach—counterfactual fairness [32] could

allow an individual to achieve better pricing without direct ac-

cess to the underlying pricing system. However, this requires both

an accurate causal model and toggles that individuals can act on

[29]. On the collective action side, Hardt et al. [22] quantified the

effect of coordinated feature changes against an algorithmic sys-

tem. In our work, collaboration does not aim to change the direct

outcome of an algorithmic system, but rather to adjust final out-

comes for individuals. Our work does not require a causal model

or online behavior change for individuals to benefit. Rather, we

focus on consumers who are incentivized by monetary reward to

share information. We specifically are interested in cases where the

goods are identical and purchased on online marketplaces, where

potentially unfair differential pricing can occur without users’

knowledge [36, 39].

Federated learning: In federated learning, data is indirectly

“shared” viamodel updates and aggregated (e.g., FedAvg [38]). There
is a very large existing body of work investigating fairness and

trying to achieve it, on both group [15, 18, 25, 34, 35, 37, 55, 59] and

individual [33, 56] levels. In the fair federated learning framework,

it is already assumed that individual entities want to participate, as

the outcomes are clear. Participation can improve both accuracy in

the underlying models as well as some notion of fairness.

In our work, we focus on whether we can incentivize rational

agents who act purely selfishly to achieve some notion of fairness.

Donahue and Kleinberg [13] extend the federated learning context

to consider whether agents should participate in a shared model

or rely on only their local information. However, this work differs

from ours as our objective is not one of model performance. They

further investigate [14] egalitarian and proportional fairness in the

context of these model-sharing games. Salehi et al. [46] develop a

model-sharing architecture for agents’ mental models but do not

explicitly consider fairness.

Marketplace mechanisms: Shapley and Shubik [48] and Roth

and Sotomayor [45] both examine the assignment game — a two-

sided matching with money. In this work, we are interested in

situations where everyone has access to the same good at different

prices, rather than valuing goods at different prices. Jagadeesan and

Teytelboym [26] look at how some markets give rise to universal

pricing, while others employ personalized pricing. Babaioff et al.

[6] and Branzei et al. [11] design auctions to limit gains from post

auction dealings, similar to those we introduce here.

3 Problem Statement
Consider a marketplaceM that offers one type of good 𝑔 to con-

sumers 𝑉 , where 𝑁 = |𝑉 |. Each consumer 𝑣 ∈ 𝑉 requires exactly

one unit of good 𝑔; the supply of 𝑔 is finite but sufficient to satisfy

𝑉 . Each consumer 𝑣 ∈ 𝑉 has a vector of attributes 𝑟𝑣 , a resource

constraint 𝑘 , and a private utility function 𝑓𝑣 . The consumers in 𝑉

can be partitioned into non-overlapping groups based on 𝑟𝑣 .

Pricing algorithmA takes a vector of properties of the consumer

𝑟𝑣 as input, and outputs a personalized price 𝑝𝑣 for consumer 𝑣 .

Resulting prices may have varying degrees of personalization—we

measure this using the dispersion of prices, 𝛿 , our measure of pricing

spread. In this work, we design an exchange system S that takes

advantage of personalized pricing so consumers profit. System S
pairs up consumers via matching process P, which outputs a set of

pairwise consumer interactions J . Let 𝑗𝑢𝑣 ∈ J be the (directed)

interaction parameterized by consumers 𝑢 and 𝑣 , where 𝑝𝑢 > 𝑝𝑣 . In

an interaction 𝑗𝑢𝑣 , consumer𝑢 will pay some𝑚 dollars to consumer

𝑣 for good 𝑔. The system S then takes some fraction 𝛾 of this𝑚 to

sustain the trading ecosystem, so the payment 𝑣 will receive for

this transaction is (1 − 𝛾)𝑚. The interactions in J are proposed to

consumers by the matching process P, but all interactions need not
occur. An interaction is executed if both consumers 𝑢 and 𝑣 benefit

according to their utility functions 𝑓𝑢 and 𝑓𝑣 .

We frame the matching process P as a network problem. Our

consumers exist in a directed network 𝐺 = (𝑉 , 𝐸) where (𝑢, 𝑣) ∈
𝐸 if 𝑝𝑢 > 𝑝𝑣 . Interactions J are matched directed edges; each

consumer 𝑣 has at most 𝑘 matched incoming edges. The outgoing

edge count is capped at 1, since each consumer can only buy the

good 𝑔 once. This resource constraint 𝑘 represents how much time

a consumer is willing to spend on this system. If an interaction 𝑗𝑢𝑣
is executed, the edge (𝑢, 𝑣) has been transacted on. We call 𝑢 the

buyer and 𝑣 intermediary; one consumer might be matched as both

an intermediary and a buyer on different transactions.

In this paper, we examine which design of exchange system

S will maximally improve our fairness targets F on marketM,

and under what circumstances it is financially feasible to maintain.

Specifically we ask:

RQ 1: Given a fairness target F , which of the following methods

to set transaction price𝑚 will maximize fairness: centralized

setting or individual negotiation?

RQ 2: In the context of our exchange system S, are some fairness

considerations (i.e., definitions of F ) more feasible to achieve

than others? In particular, how does varying F in scope and

objective affect feasibility?

RQ 3: How does revenue to the exchange system S change with

the number of consumers 𝑁 , cut 𝛾 taken by the system, and

dispersion 𝛿 of the pricing algorithm A?

4 Fairness
In RQ 2 we ask whether some fairness criteria F are more feasi-

ble than others to achieve. Inspired by Kallus and Zhou [27], we

develop our notions of fairness to be suited to this setting. We

started by considering what the “ideal” scenario would be for all

consumers. We determined the ideal fair outcome would result in

all consumers paying the same, lowest price for the good. Hence, we
seek to minimize both average price and the standard deviation in

prices paid by consumers. However, these ideal outcomes might not

be possible in our exchange system. Thus, we demonstrate lower

bounds for mean (Theorem 1) and standard deviation (Claim 1)

which can be found in Subsection 5.5. We measure the “feasibility”

of our fairness metrics by considering how close each mean and

standard deviation come to the ideals.
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Table 1: Our fairness outcomemeasures. All measures rely on
𝜔𝑢 , the net cost to consumers 𝑢. 𝜇𝑔 represents the average net
cost to consumers 𝑢 in group 𝑔. |G| is the number of groups.

Individual Group

Mean 𝜇𝐼 =

∑
𝑢∈𝑉 𝜔𝑢

𝑁
𝜇G =

∑
𝑔∈G 𝜇𝑔
| G |

S.D. 𝜎𝐼 =

√︃∑
𝑢∈𝑉 (𝜔𝑢−𝜇𝐼 )2

𝑁
𝜎G =

√︂∑
𝑔∈G (𝜇𝑔−𝜇G )2

|G|

Thus, we vary objective and scope for our fairness definitions,

i.e., what wemeasure, andwhowemeasure it for. All objectives take

as input the net cost incurred by each consumer from participating

in system S, assuming that each consumer purchases exactly one

unit of good 𝑔. For example, if consumer 𝑢 is offered price 𝑝𝑢 by

the market, but pays 𝑚 dollars to consumer 𝑣 to buy good 𝑔 for

price 𝑝𝑣 , then consumer 𝑢’s net cost is𝑚. Consumer 𝑣 ’s profit from

selling the ticket is (𝑚(1 − 𝛾) − 𝑝𝑣) and therefore their net cost for

their own ticket is 𝑝𝑣 − (𝑚(1 − 𝛾) − 𝑝𝑣). As a reminder, consumers

in our system can engage in up to 𝑘 transactions as intermediary.

We denote 𝜔𝑢 as the net cost to consumer 𝑢, where 𝜔𝑢 < 0 implies

monetary gain to 𝑢. We define two objectives (mean and standard

deviation) and two scopes (individual and group-level). We define

a group as a collection of individuals who share a demographic

attribute (in our case, 𝑟𝑣 ). We call this set of groups G. This gives
us four different fairness measures; we present them in Table 1.

We seek tominimize these values. Inminimizing individualmean,

we want all consumers to minimize the price they’re paying (some

may even earn money from S). Minimizing individual standard de-

viation captures that we want our system’s benefit to be distributed

equally among consumers; no single consumer should benefit while

others do not. In the group fairness cases, we desire similar out-

comes, but distill each group by taking the mean over individuals

in the group. We recognize that these definitions of fairness are nei-

ther standard nor exhaustive. We considered more standard fairness

metrics such as demographic parity, predicted parity, and equalized

odds [1, 2, 9, 17, 30, 32, 57, 58]. However, we decided that fairness

would best be captured in this application by metrics designed from

our ideal scenario (where all individuals get the lowest price). We

vary our fairness target over these definitions to test RQ 2.

5 The Model
5.1 Model overview
We simulate our proposed exchange system via rational agents. We

begin with consumers 𝑉 who desire exactly one unit of good 𝑔 on

marketM. Each consumer 𝑣 ∈ 𝑉 is initialized with attribute vector

𝑟𝑣 , utility function 𝑓𝑣 , and price 𝑝𝑣 for good 𝑔 according to pricing

algorithm A.

The matching process P outputs a set of interactions J between

consumers. The transaction price𝑚 of each interaction is then set

in either a centralized or decentralized fashion (i.e., either set by
the system or via consumer negotiations). Given a matched edge

(𝑢, 𝑣), buyer 𝑢 and intermediary 𝑣 exchange money for good 𝑔 if 𝑢

and 𝑣 both have positive utility for the transaction and are within

their resource constraints. Once all consumers make transaction

Algorithm 1:Model overview

Data: 𝑉 the set of consumers

Result: 𝐺 the network after trades, including transaction

prices

// PRICING ALGORITHM

1 for 𝑢 ∈ 𝑉 do
2 𝑝𝑢 ← 𝑔𝑒𝑡𝑃𝑟𝑖𝑐𝑒 (𝑢); // market assigns

personalized price to consumer

// MATCHING PROCESS

3 𝐷 an empty map from 𝑉 → 𝑉 ;

4 𝐺 ← (𝑉 , 𝐸) such that directed edge (𝑢, 𝑣) ∈ 𝐸 exists iff

𝑝𝑢 > 𝑝𝑣 ;

5 for 𝑢 ∈ 𝑉 do
6 𝐷 (𝑢) ← 𝑠𝑜𝑙𝑣𝑒𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔(𝑢,𝐺, 𝑘); // produces

matching of consumers

// EXCHANGE PROCESS

7 for 𝑢 ∈ 𝑉 do
8 𝑣 = 𝐷 (𝑢) ;
9 𝑚 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑀 ( 𝑗𝑢𝑣) ; // gets 𝑚 in a

(de)centralized manner

10 if 𝑓𝑢 ( 𝑗𝑢𝑣) > 0 and 𝑓𝑣 ( 𝑗𝑢𝑣) > 0 then
11 consumer 𝑢 pays𝑚 dollars to 𝑣 to get good 𝑔 at price

𝑝𝑣 ;

12 else
13 consumer 𝑢 pays 𝑝𝑢 to the marketM for good 𝑔

14 return 𝐺

decisions, any consumer 𝑥 who has not yet bought good𝑔will do so

at price 𝑝𝑥 , the original offered price. Algorithm 1 below references

sub-routines 𝑔𝑒𝑡𝑃𝑟𝑖𝑐𝑒 , 𝑠𝑜𝑙𝑣𝑒𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 and 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑀 , which we

detail in this section, along with utility function 𝑓𝑢 for consumer 𝑢.

5.2 Consumer attributes
Consumer properties: We assign each consumer 𝑣 a vector of

consumer properties 𝑟𝑣 . We implement 𝑟𝑣 as a scalar, but this can be

trivially extended as a vector. We consider this consumer property

to represent some demographic feature that is used by the pricing

algorithm A to assign price 𝑝𝑣 .

Resource constraint: Each consumer 𝑣 ∈ 𝑉 has the same re-

source constraint𝑘—the number of interactions for which consumer

𝑣 can serve as intermediary. All consumers serve as buyer for one

interaction.

Utility function: Each consumer 𝑢 has a utility function 𝑓𝑢 .

The form of 𝑓 is the same for each consumer. Recall that in a

given interaction 𝑗𝑢𝑣 , consumer 𝑢 is the buyer while consumer

𝑣 is the intermediary. The utility function for 𝑢 can be written as

𝑓𝑢 ( 𝑗𝑢𝑣) = 𝑝𝑢−𝑚−𝜖𝑢 𝑗
and for 𝑣 as 𝑓𝑣 ( 𝑗𝑢𝑣) =𝑚(1−𝛾)−𝑝𝑣−𝜖𝑣𝑗 where

the (1 − 𝛾) term accounts for the system receiving 𝛾 proportion of

the transaction amount𝑚.

Terms 𝜖𝑢 𝑗
and 𝜖𝑣𝑗 are the disutility to 𝑢 and 𝑣 from spending

time on this interaction. Each consumer 𝑢 is assigned a truncated

Normal distribution E𝑢 , and 𝜖𝑢 𝑗
is drawn i.i.d. from E𝑢 .
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5.3 Pricing algorithm A (𝑔𝑒𝑡𝑃𝑟𝑖𝑐𝑒)
Pricing algorithm A determines the price for good 𝑔 offered to

each consumer inM (𝑔𝑒𝑡𝑃𝑟𝑖𝑐𝑒). To capture a wide range of pricing

algorithm behavior, we define a notion of dispersion (𝛿) which

represents the spread of prices outputted by algorithm A when

prices are normalized to [0, 100]. Mathematically, it is the range

within which a large proportion of possible prices fall. We define

a pricing algorithm A𝛿 which assigns prices with dispersion 𝛿 ,

and has the following properties. 1) The range of feasible prices

is in (0, 100]. 2) A𝛿 is biased based on some immutable attribute

𝑟𝑣 of the consumer 𝑣 . We partition the set of consumers 𝑉 into

non-overlapping groups based on attribute 𝑟𝑣 . We call this set of

groups G. 3) Consumer 𝑣 ’s price 𝑝𝑣 is drawn from a distribution

DG𝑣 , where G𝑣 is 𝑣 ’s group. All consumers from the same group

have their price drawn from the same distribution. 4) Dispersion 𝛿

represents the 2.25𝜎 range of possible prices (i.e., max𝑔,ℎ∈G ((𝜇𝑔 −
2.25𝜎𝑔) − (𝜇ℎ + 2.25𝜎ℎ))), where 𝜇𝑔 represents the average net cost
to consumers 𝑢 in group 𝑔.

In addition to our simulated prices we also examine an empirical

pricing algorithm; we use a pricing model presented in prior work

[28], which investigates airline ticket pricing.We assume that prices

shared by consumers are collected by an automated system (e.g.,
browser extension) to ensure that prices available to the algorithm

are the same prices available to the consumer.

5.4 Exchange system S
(𝑠𝑜𝑙𝑣𝑒𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔 and 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑀)

In RQ 1 we ask whether the transaction price 𝑚 should be set

centrally or determined by individual negotiations. We experiment

with two methodologies for setting the transaction price𝑚:

Centralized:We solve for the optimally fair consumer matching

and𝑚-value setting (maximizing fairness criteria F ). The system
is not aware of private utility functions of individuals, so recom-

mended matchings at optimal𝑚 values may not actually transact.

This optimization outputs a set of interactions J such that each

consumer has at most one outgoing interaction (i.e., as buyer),

and at most 𝑘-many incoming interactions (i.e., as intermediary).

The transaction prices 𝑚𝑢𝑣 for all 𝑗𝑢𝑣 ∈ J are simultaneously

set centrally to maximize F . Each consumer can either accept the

transaction price𝑚 or refuse.

minimize

∑
𝑢∈𝑉 𝜔𝑢

|𝑉 |
s.t. 𝑝𝑣/(1 − 𝛾) ≤ 𝑚𝑢𝑣 ≤ 𝑝𝑢 ∀𝑗𝑢𝑣 ∈ J
𝑥𝑢𝑣 ∈ {0, 1} ∀𝑗𝑢𝑣 ∈ J // 𝑢 buys from 𝑣∑︁
𝑣

𝑥𝑢𝑣 ≤ 1 ∀𝑢 ∈ 𝑉 // a consumer can buy once∑︁
𝑢

𝑥𝑢𝑣 ≤ 𝑘 ∀𝑣 ∈ 𝑉 // and act as intermediary 𝑘 times

𝜔𝑢 =
∑︁
𝑣∈𝑉

𝑥𝑢𝑣𝑚𝑢𝑣︸  ︷︷  ︸
buyer’s new price if traded

+
∑︁
𝑣∈𝑉

(1 − 𝑥𝑢𝑣)𝑝𝑢︸        ︷︷        ︸
buyer’s new price if not traded

−
∑︁
𝑣∈𝑉

𝑥𝑣𝑢 (𝑚𝑢𝑣 (1 − 𝛾) − 𝑝𝑣)︸                      ︷︷                      ︸
intermediary’s profit if traded

∀𝑢 ∈ 𝑉

Above is the linear program using 𝜇𝐼 , the fairness objective that

represents individual mean net cost paid, as our example objective

function. The other objectives can be found in Table 1. The goal

of this program is to output interactions J along with transaction

prices𝑚𝑢𝑣 for all 𝑗𝑢𝑣 ∈ J . If no 𝑗𝑢𝑣 exists in J for a consumer

𝑢, then 𝑢 will pay the original price it was assigned for good 𝑔,

which is 𝑝𝑢 . Due to the presence of the binary variable 𝑥𝑢𝑣 , this is

a mixed integer program, which is at least NP-hard [3]. Minimizing

𝜇𝐼 and 𝜇G is a linear objective, while minimizing 𝜎𝐼 or 𝜎G results

in a Mixed Integer Quadratic Program, also NP-hard [42]. In our

analysis for the linear objective, we solve to completion. For the

quadratic objective, we return the best result given by the solver

after a pre-specified amount of time (60 seconds). We use Gurobi

[20] as our solver.

Decentralized (individual negotiation): Here, we keep the

matching J given by the centralized process, but allow consumers

𝑢 and 𝑣 to negotiate individually for the transaction prices 𝑚𝑢𝑣 .

Rather than simulate bargaining between the consumers, we make

an assumption regarding the settled transaction price. In our imple-

mentation, we set each𝑚𝑢𝑣 to the Nash bargaining solution, which

maximizes the product of the net prices paid [41]. We choose this

value because it is a likely outcome after individual negotiations.

Other values could be used as well, such as the mean of prices.

We test four fairness definitions, F , and two price setting pro-

cesses for 𝑚; in total this gives eight methodologies. For conve-

nience we denote each methodology as a fairness metric,𝑋 indexed

by a process, 𝑌 , i.e., 𝑋𝑌
for 𝑋 ∈ {𝜇𝐼 , 𝜇G, 𝜎𝐼 , 𝜎G} and 𝑌 ∈ {C, D}. For

example, 𝜇𝐶
𝐼
refers to optimizing 𝜇𝐼 via the centralized methodol-

ogy. We also notate 𝜇𝑌 to refer to 𝜇𝑌
𝐼
, 𝜇𝑌G methods and 𝜎𝑌 to refer

to 𝜎𝑌
𝐼
, 𝜎𝑌G methods.

5.5 Theoretical claims
Theorem 5.1. For 𝜖𝑢 = 0 ∀𝑢 ∈ 𝑉 , the mean net cost over all

consumers after trading is bounded below by 𝑝𝑚𝑖𝑛 (
1− |𝐵 |𝛾

𝑁

1−𝛾 ), where 𝐵
is the set of consumers that will never engage as a buyer in the system,
and 𝑝𝑚𝑖𝑛 is the minimum price assigned to any consumer.

Proof. Without loss of generality, let consumer 𝑢 buy a ticket

from consumer 𝑣 for a cost of𝑚𝑢𝑣 . Let us define gain to a consumer

from trade as the cost improvement the consumer experiences as a

result of a given transaction. For a fixed 𝛾 (the proportion of the

trade cost taken by the system), the gain to the intermediary from

this interaction is𝑚𝑢𝑣 (1 − 𝛾) − 𝑝𝑣 while the gain to the buyer is

𝑝𝑢 −𝑚𝑢𝑣 . Then, the sum of the gain to consumers 𝑢 and 𝑣 from this

transaction is (𝑝𝑢 −𝑚𝑢𝑣) + (𝑚𝑢𝑣 (1 − 𝛾) − 𝑝𝑣) = 𝑝𝑢 − 𝑝𝑣 − 𝛾𝑚𝑢𝑣 .

In order to minimize mean net cost, we must maximize gains

from trade across all consumers for all possible transactions. To

maximize gain from a single trade between consumers𝑢 and 𝑣 ,𝑚𝑢𝑣

must be minimized. The minimum value for𝑚𝑢𝑣 is the transaction

price 𝑚𝑢𝑣 =
𝑝𝑣
1−𝛾 . When 𝜖𝑢 = 0, at this price the intermediary

𝑣 experiences 0 gain; a buyer will accept this price if 𝑝𝑢 ≥ 𝑝𝑣
1−𝛾 .

Denote 𝐴 as the set of consumer pairs (𝑢, 𝑣) that have traded and

𝐵 as the set of consumers 𝑢 ∈ 𝑉 that have not acted as a buyer. We

note that |𝐴| + |𝐵 | = 𝑁 as a consumer can only be a buyer once. We
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can then write the net price paid as shown below, since 𝑝𝑚𝑖𝑛 is the

lowest price possible.∑︁
(𝑢,𝑣) ∈𝐴

𝑝𝑣

1 − 𝛾 +
∑︁
𝑢∈𝐵

𝑝𝑢 ≥ |𝐴|
𝑝𝑚𝑖𝑛

1 − 𝛾 + |𝐵 |𝑝𝑚𝑖𝑛

=
( |𝐴| + |𝐵 |)𝑝𝑚𝑖𝑛 − |𝐵 |𝛾𝑝𝑚𝑖𝑛

1 − 𝛾 = 𝑝𝑚𝑖𝑛

(
𝑁 − |𝐵 |𝛾
1 − 𝛾

)
Dividing by 𝑁 we are left with the following lower bound:

𝑝𝑚𝑖𝑛

(
1 − |𝐵 |𝛾

𝑁

1 − 𝛾

)
□

Claim 1. When 𝛾 = 0 and 𝑘 = |𝑉 | − 1, the minimum standard
deviation in net cost is 0.

Proof. When 𝛾 = 0, minimizing standard deviation in net price

requires that all consumers trade with the consumer who got the

lowest price at𝑚 = 𝑝𝑚𝑖𝑛 . Then, all buyers will pay 𝑝𝑚𝑖𝑛 , while the

intermediary consumer earns nothing, and still pays 𝑝𝑚𝑖𝑛 for their

good. The net cost to all consumers is 𝑝𝑚𝑖𝑛 and thus the standard

deviation is 0. □

Claim 2. This system satisfies Individual-Rationality (IR).

Proof. Buyers transact at price𝑚 if 𝑓𝑢 ( 𝑗𝑢𝑣) = 𝑝𝑢 −𝑚 − 𝜖𝑢𝑖 ≥ 0.

If both consumers have positive utility they will trade and benefit.

Otherwise, one or both will reject and both will pay their original

price. Hence, they are no worse off from participating. □

6 Results
We implement our model S with 100 consumers (𝑁 = 100). We

sample consumer disutility from E𝑢 ∼ truncated 𝑁 (𝜇𝑢 , 1) where
𝜇𝑢 ∼ 𝑈 (0, 2). We set |G| = 5 where every consumer has an equal

probability of being assigned to each group. We choose dispersion

values 𝛿 = {0.05, 0.25, 0.50, 0.75, 0.95} which maps to five pricing

algorithms: A0.05, A0.25, A0.50, A0.75, A0.95; the exact mapping

can be found in Appendix C. In our construction, we change the

distribution of prices while ensuring that mean price across pric-

ing algorithms is roughly equal ($50) which allows us to analyze

the impact of dispersion directly. All pricing algorithms are con-

structed by a set of Normal distributions so prices are within (0, 100].
For example, A0.95 involves five Normal distributions with means

{10, 30, 50, 70, 90} respectively, all with standard deviation
10

3
.

In our analysis for the linear objective, we solve to completion.

For the quadratic objective, we return the best result given by the

solver after a pre-specified amount of time (60 seconds). We use

Gurobi [20] as our solver. In regards to optimization feasiblity—we

find the duality gaps for 𝜇I and 𝜇G are 0. For 𝜎I , the duality gap

is 67%, while for 𝜎G it is 0.02%. This suggests that 𝜇I and 𝜇G are

more feasible to optimize, while 𝜎I is more difficult. We discuss

this feasibility further in Section 6.2.

6.1 RQ 1: Centralized versus decentralized
𝑚-setting

In RQ 1 we ask: Given a fairness target F (Table 1), which of

the following methods to set transaction price 𝑚 will maximize

fairness: individual negotiation or central allocation? In Section 5

we described in detail two methods to set transaction price𝑚 for

an interaction 𝑗𝑢𝑣 , where 𝑢 buys from intermediary 𝑣 . In brief, the

centralized setting solves for optimal edges and prices 𝑚, from

which consumers can choose to accept or reject the given price.

The decentralized option uses these same solved edges, but instead

allows paired consumers to negotiate for the transaction price𝑚.

In our implementation,𝑚 values for these interactions are chosen

according to the Nash bargaining solution.

To answer RQ 1, we simulate transactions on our system S. We

test the centralized and decentralized procedures for setting𝑚, four

fairness targets F (i.e., eight cases), six values for 𝑘 (the number of

interactions for which a consumer can serve as intermediary), with

𝛾 = 0.4 (the cut the system takes from the interaction). Here we

present A0.95 as the pricing algorithm (prices are highly dispersed

with 𝛿 = 0.95). Each simulation is run 100 times; we present the

average of these, and bands that show one standard deviation. In

Figure 2, we plot all eight cases against four fairness targets.

Notably, the centralized procedures vary minimally and have

little impact on fairness targets (Figure 2). Under this procedure,

each consumer is required to either accept or reject the price that

maximizes fairness globally. As described in Theorem 1, to minimize

mean net cost, a consumer acting as intermediary will be asked

to engage in the exchange without benefiting monetarily. Because

each consumer experiences disutility (𝜖) that is unknown to the

system, very few intermediaries engage in exchanges at centrally-

set prices. The same is true for other fairness targets.

We contrast this with decentralized procedures where pairings

are set, but consumers negotiate the prices. These negotiated prices

aremore likely to provide utility to both consumers, and hencemore

trades occur. When optimizing for 𝜇𝐼 (individual mean; shown in

Figure 2a) and 𝜇G (group mean; shown in Figure 2c) this results in

the decentralized procedure lowering the net cost to an average of

$17 (Figure 2a)— nearly a 66% reduction in cost, compared to the av-

erage assigned price of $50. However, even when edges are selected

to minimize the standard deviation at the individual (𝜎𝐼 ; Figure 2b)

or group (𝜎G ; Figure 2d) level, the decentralized procedure can

lead to increased price variation as 𝑘 increases, because consumers

selfishly negotiate. As 𝑘 increases, consumers with lower prices can

complete more transactions (benefiting more monetarily), while

those with high prices can only benefit by buying once.

6.2 RQ 2: Feasibility of our fairness measures
In RQ 2 we ask whether some fairness conditions (i.e., definitions
of F , described in Section 4) are more feasible to achieve than

others. In particular, how does varying F in scope (i.e., individual
vs. group) and objective (mean vs. variance) affect the ability of the

system to achieve that fairness outcome? To answer this question

we run simulations as described previously.

In Figure 2 we show how optimizing for each fairness target

F affects the measure of each outcome. Here we will focus on

the decentralized scenario, as centralized price-setting results in
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Figure 2: Realization of four fairness definitions (a-d) under eight different optimizations (eight curves representing four
fairness targets, two price-setting procedures). We set 𝑁 = 100, 𝛾 = 0.4 and use pricing algorithm A0.95. Centralized methods are
blue; decentralized orange. Variance bands show one standard deviation. 𝜇𝐼 and 𝜇G can be effectively lowered by decentralized
methods targeting their respective metrics. 𝜎𝐼 and 𝜎G are less feasible for all metrics; in particular 𝜎𝐼 for decentralized methods
increases with 𝑘 .

Table 2: Our “feasibility” measure for each fairness metric
when 𝑘 = 32, 𝛾 = 0.4. We examine whether optimizing for
each metric actually improves said metric. 𝜇𝐷 methodologies
are feasible while 𝜎𝐷 methodologies are not.

Metric Pre-exchange Post-exchange % Change
𝜇𝐼 49.8 16.7 -66%
𝜎𝐼 28.5 76.9 170%
𝜇G 49.9 15.7 -69%
𝜎G 28.3 37.3 32%

minimal trades. We see that when specifically optimizing for 𝜇𝐼
and 𝜇G , decentralized price-setting is able to effectively reduce

the average price paid. On the other hand, achieving low standard

deviation (Figure 2b, 2d) is more difficult. We can investigate how

optimizing for each fairness metric compares to the “ideal” scenario.

In Table 2 we show numerically that 𝜇-optimizing procedures are

more feasible under decentralized settings, while 𝜎-optimizing are

less so. During decentralized negotiations, as 𝑘 (the number of times

a consumer can act as intermediary) increases, intermediaries are

able to benefit multiple times while buyers only benefit once. This

increases the gap, even when choosing 𝜎-optimizing pairings.

6.3 RQ 3: Revenue to the exchange system S
In RQ 3 we ask: How does revenue to exchange system S change

due to𝛾 (the cut taken by the system),𝑁 (the number of consumers),

and 𝛿 (the dispersion of pricing algorithm A)? For exchange sys-

tem S to be economically viable, 1) the system must be able to

recover operation costs and 2) consumers must have an incentive

to participate even when the system takes a cut. We compare de-

centralized methods to determine which earns the system the most

revenue. In Figure 3 we show, for different 𝛾 values, similar system

revenues from each approach. As 𝛾 increases, revenue increases

until some maximum (approximately 𝛾 = 0.8), where consumers

refuse to trade, and revenue decreases. At this point, the system

earns ≈ $2200 (see the peak in Figure 3). Given that the original

seller would have made $5000 when consumers were not trading

(with an average good price of $50 for 100 consumers), this repre-

sents a substantial cut of revenue being redirected to the exchange.

In Figure 3 we show system revenue and consumer intermediary

profits specifically for 𝜇𝐷
𝐼
. For sufficiently high 𝛾 , system revenue
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Figure 3: System revenue for four methodologies and in-
termediaries’ profits for 𝜇𝐷I . System revenue changes with
respect to 𝛾 under high dispersion 𝛿 = 0.95 and 𝑘 = 16. The
system at most earns ≈ $2200 in revenue, representing a large
cut to the original seller’s revenue without trading. For suffi-
ciently high 𝛾 , system revenue falls as consumers find fees
too high. Intermediary profits decline as a function of 𝛾 .

decreases as the system takes more and consumers find it unprof-

itable to trade. Intermediary consumers consistently lose profits as

𝛾 increases.

To study the impact of dispersion 𝛿 and number of consumers

𝑁 on revenue, we again focus on 𝜇𝐷
𝐼
. We examine the importance

of dispersion (𝛿) in Figure 4, where we run our simulation with

five different pricing algorithms: A0.05,A0.25, A0.50, A0.75, A0.95.

We construct our dispersion models to hold means constant—this

allows for direct comparison of dispersion levels, which can dra-

matically impact the prices that individuals pay as well as the sus-

tainability of the system. In Figure 4a we show that under system S,
higher dispersion models result in lower average prices for individ-

uals. For high values of 𝑘 , the highest dispersion model achieves an

average net price of $16 versus $50 in the lowest dispersion case—a

near 66% reduction. This is in contrast to the medium dispersion

case (𝛿 = 0.5) with a reduction of ≈ 15% and the low dispersion

case (𝛿 = 0.05) with no reduction.

Figure 4b shows that this system earns more under higher dis-

persion settings; if dispersion is too low, trading with any fees is

not viable. We closely examine the high dispersion scenarios: the

pricing algorithm with 𝛿 = 0.75 narrowly earns more than 𝛿 = 0.95

(within variance bounds). When dispersion is sufficiently high, con-

sumers are willing to trade. If dispersion increases (from 𝛿 = 0.75

to 0.95), it results in a decrease in the mean Nash bargaining solu-

tion for price, so the system earns slightly less. Nevertheless, the

revenues are comparable.

We can also use the dispersion 𝛿 of the market to determine

whether one should invest in this type of system. We see in low

dispersion settings (𝛿 = 0.05 or 𝛿 = 0.25) that no 𝑁 value would

be able to sustain this system; for 𝛿 = 0.50 to 𝛿 = 0.95 the rev-

enue scales linearly up to 𝑁 = 500. To justify developing such a

system, market prices need to exhibit sufficiently high dispersion—

else there is no revenue to be made regardless of 𝑁 . Whether this

system S is profitable to build depends on the cost structure of the

implementation: the fixed cost as well as cost that scales with 𝑁 .
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Figure 4: Impact of price dispersion (𝛿) on outcomes (𝛾 = 0.4).
As 𝑘 increases, more consumers can access the lower price
(a). Note that 𝜇𝐼 without trading is ≈ $50. If dispersion is too
low for a given 𝛾 , trading will decrease (b). Assuming a finan-
cially viable 𝛾 , system revenue increases with 𝑁 , and 𝛿 = 0.75

maximizes revenue. At 𝛿 > 0.75 nearly all consumers have
incentive to trade; increasing 𝛿 lowers the Nash bargaining
solution and thus system revenue. Increasing price disper-
sion lowers mean cost paid (𝜇𝐼 ) and increases system revenue
to a point.

Our results suggest that more dispersed personalized pricing allows

the system S to better help users achieve fairer outcomes while

earning good revenue. This provides an opportunity for fair pricing

as well as keeping sellers accountable when employing extreme

personalization.

7 Discussion
Analysis of an empirical pricing distribution: Here we show
our system S on a real (rather than simulated) pricing distribution.

We use prices as modeled in prior work [28]. Using this pricing

distribution (which includes nine non-overlapping groups), we run

a simulation with𝑁 = 100 consumers. Figure 5 shows improvement

even when the range in prices is small. Specifically, the range is

$6.15, and the maximum price is $275.82; this gives a dispersion of

≈ 0.02 after normalizing prices to (0, 1]. Compared to the simulated

example, the minimum price achievable is not 0 but rather ≈ 270;
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hence this is the lowest possible expected price. Without trading,

the gap between the average price and best price was $3.23. Trading

using the 𝜇𝐷
𝐼
methodology results in $1.22, a 62% reduction of the

gap (Figure 5a) while reducing the sticker price by ≈ 0.75%. We set

𝛾 values to be much smaller than in the simulated examples due

to the higher transaction prices. Even with low 𝛾 values, revenues

are reasonable, peaking at 𝛾 = 0.01 (Figure 5b) and about $100

in revenue for 𝑁 = 100. These results indicate the feasibility of

implementing our system in a market such as this one.

0 5 10 15 20 25 30
Number of Allowed Trades (k)

270.5

271.0

271.5

272.0

272.5

273.0

273.5

274.0

C

D

C

D

without_trading

C

D

C

D

min possible

(a) Welfare improvement for flights, (𝛾 = 0.005)

0.000 0.005 0.010 0.015 0.020
Fraction of Transaction Price Taken by System ( )

0

25

50

75

100

125

150

Pr
oc

ee
ds

 ($
)

Exchange System  Revenue
Intermediary Profit

(b) 𝛾 vs system proceeds

Figure 5: Exchange system on an empirical pricing distribu-
tion. In (a) we see again that decentralized methods are able
to reduce the gap between the best possible price and the
prices paid by 62%. In (b) the cut taken by the system 𝛾 must
be low; at 𝛾 = 0.01 the system still earns $100.

What is fair?: We consider various definitions of fairness in this

work, outlined in Table 1. Ideally, one would like to maximize all

definitions simultaneously for the most “fair” result. In particular,

the perfect solution would involve every member of every group

simultaneously achieving the lowest price, minimizing the variation

and average price paid across individuals and groups. Our results

suggest simultaneously achieving low prices and low variation in

prices across individuals or groups is difficult. In particular, there is

an explicit trade-off between mean and variance. In order to reduce

the net price, an intermediary with a low price must be incentivized

to engage in trades by earning money. However, at this scale, an

intermediary can benefit from multiple trades, while a buyer can

only benefit from a single trade—this can increase variance. We

make no claim regarding which is ideal; it is context dependent.

A more informed system: In our simulations, we assume that

the system S has minimal information: it is aware of the prices

that the consumers receive, but not each individual consumer’s

disutility (𝜖𝑣 ) per trade. This limits the ability of the system to effec-

tively match consumers, especially in the centralized case, where

the optimal matching requires one of the consumers to transact

with minimal personal benefit. Thus, such transactions are not

executed. If the exchange system were aware of each consumer’s

disutility, it could incorporate that information in determining the

optimal prices and result in more successful, fairness-improving

transactions. This, however, requires collecting information from

consumers that they may not be entirely aware of. Though we

model consumer 𝑣 ’s disutility with a distribution 𝜀𝑣 , consumer 𝑣

“draws” from this distribution for each transaction. This draw rep-

resents the current state of consumer 𝑣 and how long they are

willing to spend on this transaction, which is information they may

not be able to accurately convey. While having more information

could boost the effectiveness of the centralized matching, the details

regarding collecting it are better left for future studies.

Closeness of 𝜇𝐼 and 𝜇G : In our implementation, 𝜇𝐼 and 𝜇G
values track very closely. This is because an average over indi-

viduals weights each individual equally, while an average over

groups weights individuals in smaller groups more heavily. Given

our assumption that group sizes are roughly equal, 𝜇𝐼 and 𝜇𝐺 are

algebraically quite close; if group sizes were identical, 𝜇𝐼 and 𝜇𝐺
would be as well. Using different distribution of group sizes can

lead to different outcomes. We show an example in Appendix B

where in highly skewed cases, a small group getting the best price

can receive a far more disproportionate benefit. Future work can

look at different and more realistic distributions of pricing buckets.

Interaction between the exchange system and market: In
this work, we assume that the exchange system and market are

independent; in particular, that the market’s pricing algorithm does

not respond to consumer trading. We believe this is a reasonable

assumption; if a very small group of individuals is participating

in this system, the consumers’ behavior may go unnoticed. We

simulate this a single-shot game, with no opportunity for the seller

to respond.We recognize that if the behavior is detected, the pricing

system could react, possibly raising prices overall and resulting in

all users losing access to cheaper pricing [31].

If we allow for a repeated game, there are several ways a mar-

ketplace might respond: 1) increasing technical barriers for the

consumer that block trades, 2) increasing personalization, 3) de-

creasing personalization but increasing prices overall. While we

cannot predict which of these might occur, the modeling of our

system is robust to all of these changes–increased technical barri-

ers can be modeled as additional disutility to each consumer from

participating in each transaction; increased personalization would

actually increase the fairness of outcomes; decreased personaliza-

tion, while decreasing fairness, can be easily modeled with a change

to pricing algorithm A.

Another issue that may arise between the system and market

is that owners of the exchange system could forgo fairness and

accountability in exchange for higher revenue. If the system and

market collude, the market could produce prices that, when passed
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through the colluding exchange systemS, result in worse outcomes

for consumers, but higher revenue for the system and market. Con-

sidering our finding that higher dispersion can increase revenue

and decrease net cost to consumers, existence of such a strategy

is possible. Thus, the assumption that the system is independent

from the market and has different goals is key.

8 Future Work and Limitations
Scale of transactions: In this work we discuss the sale of one

good 𝑔. We assume consumers 𝑉 simultaneously browse the mar-

ketM for good 𝑔, so the system S matches these consumers. This

assumption is important so all consumers in 𝑉 can acquire good

𝑔 in a timely manner. It is possible, however, that consumers are

browsing the same marketplace for multiple goods. In this case,

multiple matchings and transactions would occur in parallel, in-

creasing profit but also the cost of the system S to maintain itself.

If our system were to be deployed on a real market, the time scale

and number of goods would need to be considered in the matching.

We leave the multi-good matching problem for future work.

Market structure: Our simulations assume a particular market

structure, where a single good is available with enough supply

to satisfy all demand. We also assume that each consumer must
buy the good. However, one rationale for personalized pricing is

that some users are less willing to pay for a good than others [16].

Incorporating this requires a more detailed utility function for good

purchase, which we defer to future work. We also assume that the

resource constraint per user is the same; in practice this may not

be true.

System participation: Here we allowed consumers to partici-

pate for free but pay a fee per transaction. Another potential struc-

ture is to charge a flat fee to participate, but then allow consumers

to exchange freely. However, this structure requires convincing

users to join the system with an upfront fee. Investigating and com-

paring these exchange system structures is an avenue for future

work.

Human studies: In this work we make simplifying assumptions

regarding consumers’ actions, e.g., the form of their utility functions,

willingness to participate, demographic attributes, and resource

constraints. To test these assumptions, future human studies would

be ideal. This would allow us to test our design principles on users

who may not respond as we originally modeled them. Other design

principles could be tested as well (e.g., wording of messaging to

consumers) to incentivize trading.

9 Conclusion
In this paper we introduced a fairness-centered exchange system

that takes advantage of personalized pricing to improve fairness.

We simulated the effect of price dispersion and explored two differ-

ent transaction price-setting procedures paired with four fairness

targets to answer RQ 1 and RQ 2. These modeling choices set the

transaction prices from which the system and consumers can profit.

To answer RQ 3, we showed that our system’s revenue is higher

when prices are more dispersed, and that consumers are able to

achieve lower prices—up to 66% improvement for the mean net

cost to individuals and 69% for the mean net cost to a group. We

demonstrated that a decentralized negotiation approach is better

able to achieve most notions of fairness compared to a centralized

approach. While a designer could choose to focus on either mean or

standard deviation as fairness targets, from a financial sustainability

perspective, minimizing mean net cost paid by an individual earned

more than other targets. Our approach is a consumer-driven solu-

tion to personalized pricing that does not rely on fair pricing by the

seller, or marketplace regulations. Further directions include consid-

ering multiple goods—requiring computing multiple matchings in

parallel, and changing the market structure such that all consumers

are not required to buy the good. One might also consider varied

financial structures to support the exchange system, or conducting

human studies to better test the assumptions we made in this work.

Our results provide theoretical evidence that such a system could

improve fairness for consumers while sustaining itself financially

and holding sellers accountable for extreme personalized pricing.

Acknowledgments
We would like to thank Andy Lee and Tanvi Bajpai for providing

feedback on initial drafts, especially on theoretical contributions.

We would also like to thank the various anonymous reviewers for

their suggestions.

References
[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna

Wallach. 2018. A reductions approach to fair classification. In International
conference on machine learning. PMLR, 60–69.

[2] Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. 2019. Fair regression:

Quantitative definitions and reduction-based algorithms. In International Confer-
ence on Machine Learning. PMLR, 120–129.

[3] Sanjeev Arora and Boaz Barak. 2009. Computational complexity: a modern ap-
proach. Cambridge University Press.

[4] Khursheed Aurangzeb, Sheraz Aslam, Syed Muhammad Mohsin, and Musaed

Alhussein. 2021. A fair pricing mechanism in smart grids for low energy con-

sumption users. IEEE Access 9 (2021), 22035–22044.
[5] Juan Pedro Aznar, Josep Maria Sayeras, Guillem Segarra, and Jorge Claveria. 2018.

Airbnb landlords and price strategy: Have they learnt price discrimination from

the hotel industry? Evidence from Barcelona. International Journal of Tourism
Sciences 18, 1 (2018), 16–28.

[6] Moshe Babaioff, Nicole Immorlica, Yingkai Li, and Brendan Lucier. 2021. Making

auctions robust to aftermarkets. arXiv preprint arXiv:2107.05853 (2021).
[7] Siddhartha Banerjee, Kamesh Munagala, Yiheng Shen, and Kangning Wang.

2024. Fair price discrimination. In Proceedings of the 2024 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 2679–2703.

[8] Joachim Baumann, Piotr Sapiezynski, Christoph Heitz, and Anikó Hannák. 2024.

Fairness in Online Ad Delivery. In The 2024 ACM Conference on Fairness, Account-
ability, and Transparency. 1418–1432.

[9] SumanK. Bera, Deeparnab Chakrabarty, Nicolas J. Flores, andMaryamNegahbani.

2019. Fair Algorithms for Clustering. (2019), 1–21. arXiv:1901.02393 http:

//arxiv.org/abs/1901.02393

[10] Dirk Bergemann, Benjamin Brooks, and Stephen Morris. 2015. The limits of price

discrimination. American Economic Review 105, 3 (2015), 921–957.

[11] Simina Branzei, Mahsa Derakhshan, Negin Golrezaei, and Yanjun Han. 2024.

Learning and Collusion in Multi-unit Auctions. Advances in Neural Information
Processing Systems 36 (2024).

[12] Maxime C Cohen, Adam N Elmachtoub, and Xiao Lei. 2022. Price discrimination

with fairness constraints. Management Science 68, 12 (2022), 8536–8552.
[13] Kate Donahue and Jon Kleinberg. 2021. Model-sharing games: Analyzing feder-

ated learning under voluntary participation. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 5303–5311.

[14] Kate Donahue and Jon Kleinberg. 2023. Fairness in Model-Sharing Games. In

Proceedings of the ACM Web Conference 2023 (Austin, TX, USA) (WWW ’23).
Association for Computing Machinery, New York, NY, USA, 3775–3783. doi:10.

1145/3543507.3583483

[15] Wei Du, Depeng Xu, Xintao Wu, and Hanghang Tong. 2021. Fairness-aware ag-

nostic federated learning. In Proceedings of the 2021 SIAM International Conference
on Data Mining (SDM). SIAM, 181–189.

[16] Jean-Pierre Dubé and Sanjog Misra. 2017. Personalized Pricing and Consumer
Welfare. Working Paper 23775. National Bureau of Economic Research. doi:10.

3386/w23775

1168

https://arxiv.org/abs/1901.02393
http://arxiv.org/abs/1901.02393
http://arxiv.org/abs/1901.02393
https://doi.org/10.1145/3543507.3583483
https://doi.org/10.1145/3543507.3583483
https://doi.org/10.3386/w23775
https://doi.org/10.3386/w23775


Oh the Prices You’ll See: Designing a Fair Exchange System to Mitigate Personalized Pricing FAccT ’25, June 23–26, 2025, Athens, Greece

[17] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. ITCS 2012 - Innovations in Theoreti-
cal Computer Science Conference (2012), 214–226. doi:10.1145/2090236.2090255
arXiv:1104.3913

[18] Yahya H Ezzeldin, Shen Yan, Chaoyang He, Emilio Ferrara, and A Salman Aves-

timehr. 2023. Fairfed: Enabling group fairness in federated learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 37. 7494–7502.

[19] Vincent Grari, Arthur Charpentier, and Marcin Detyniecki. 2022. A fair pricing

model via adversarial learning. arXiv preprint arXiv:2202.12008 (2022).
[20] Gurobi Optimization, LLC. 2023. Gurobi Optimizer Reference Manual. https:

//www.gurobi.com

[21] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wilson.

2014. Measuring price discrimination and steering on e-commerce web sites. In

Proceedings of the 2014 conference on internet measurement conference. 305–318.
[22] Moritz Hardt, Eric Mazumdar, Celestine Mendler-Dünner, and Tijana Zrnic. 2023.

Algorithmic Collective Action in Machine Learning. arXiv:2302.04262 [cs.LG]

[23] James E Heyman and Barbara A Mellers. 2008. Perceptions of fair pricing. Hand-
book of consumer psychology (2008).

[24] Kevin Hogan. 2018. Consumer Experience in the Retail Rennissance. Technical
Report. Deloitte Digital, SalseForce. https://www.deloittedigital.com/us/en/blog-

list/2018/consumer-experience-in-the-retail-renaissance--how-leading-

brand.html

[25] Wei Huang, Tianrui Li, Dexian Wang, Shengdong Du, and Junbo Zhang. 2020.

Fairness and accuracy in federated learning. arXiv preprint arXiv:2012.10069
(2020).

[26] Ravi Jagadeesan and Alexander Teytelboym. 2021. Matching and prices. Technical
Report. Working paper, Stanford Univ.

[27] Nathan Kallus and Angela Zhou. 2021. Fairness, welfare, and equity in personal-

ized pricing. In Proceedings of the 2021 ACM conference on fairness, accountability,
and transparency. 296–314.

[28] Aditya Karan, Naina Balepur, and Hari Sundaram. 2023. Your Browsing His-

tory May Cost You: A Framework for Discovering Differential Pricing in Non-

Transparent Markets. In Proceedings of the 2023 ACM Conference on Fairness,
Accountability, and Transparency (Chicago, IL, USA) (FAccT ’23). Association
for Computing Machinery, New York, NY, USA, 717–735. doi:10.1145/3593013.

3594038

[29] Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. 2021. Algorithmic

Recourse: From Counterfactual Explanations to Interventions. In Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and Transparency (Virtual

Event, Canada) (FAccT ’21). Association for Computing Machinery, New York,

NY, USA, 353–362. doi:10.1145/3442188.3445899

[30] Jon Kleinberg, Sendhil Mullainathan, Manish Raghavan, and Alexandra Choulde-

chova. 2017. Fair Prediction with Disparate Impact: A Study of Bias in Recidivism

Prediction Instruments. Big Data 67, 2 (2017), 1–23. doi:10.4230/LIPIcs.ITCS.2017.
43 arXiv:1703.00056

[31] Georgia Kosmopoulou, Qihong Liu, and Jie Shuai. 2016. Customer poaching and

coupon trading. Journal of Economics 118 (2016), 219–238.
[32] Matt Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfactual

fairness. Advances in Neural Information Processing Systems 2017-Decem, Nips

(2017), 4067–4077. arXiv:1703.06856

[33] Jie Li, Tianqing Zhu, Wei Ren, and Kim-Kwang Raymond. 2023. Improve individ-

ual fairness in federated learning via adversarial training. Computers & Security
132 (2023), 103336. doi:10.1016/j.cose.2023.103336

[34] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair and

robust federated learning through personalization. In International Conference on
Machine Learning. PMLR, 6357–6368.

[35] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2019. Fair resource

allocation in federated learning. arXiv preprint arXiv:1905.10497 (2019).

[36] Kasper Lippert-Rasmussen and Lauritz Aastrup Munch. 2023. 467Price

Discrimination in the Digital Age. In Oxford Handbook of Digi-
tal Ethics. Oxford University Press. doi:10.1093/oxfordhb/9780198857815.

013.24 arXiv:https://academic.oup.com/book/0/chapter/323167072/chapter-ag-

pdf/56886722/book_37078_section_323167072.ag.pdf

[37] Lingjuan Lyu, Xinyi Xu, Qian Wang, and Han Yu. 2020. Collaborative fairness in

federated learning. Federated Learning: Privacy and Incentive (2020), 189–204.
[38] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks

from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 54), Aarti Singh and Jerry Zhu (Eds.). PMLR, 1273–1282. https://proceedings.

mlr.press/v54/mcmahan17a.html

[39] Akiva A Miller. 2014. What do we worry about when we worry about price

discrimination-the law and ethics of using personal information for pricing. J.
Tech. L. & Pol’y 19 (2014), 41.

[40] Jeffrey Moriarty. 2021. Why online personalized pricing is unfair. Ethics and
Information Technology 23, 3 (2021), 495–503.

[41] Martin J Osborne. 1990. Bargaining and markets. (1990).

[42] Alberto Del Pia, Santanu S Dey, and Marco Molinaro. 2017. Mixed-integer

quadratic programming is in NP. Mathematical Programming 162 (2017), 225–

240.

[43] Timothy J Richards, Jura Liaukonyte, and Nadia A Streletskaya. 2016. Personal-

ized pricing and price fairness. International Journal of Industrial Organization
44 (2016), 138–153.

[44] Julio J Rotemberg. 2011. Fair pricing. Journal of the European Economic Association
9, 5 (2011), 952–981.

[45] Alvin E Roth and Marilda Sotomayor. 1992. Two-sided matching. Handbook of
game theory with economic applications 1 (1992), 485–541.

[46] Sajjad Salehi, Fattaneh Taghiyareh, Mohammad Saffar, and Kambiz Badie. 2012.

A context-aware architecture for mental model sharing in intelligent agents.

In 2012 IEEE 10th International Symposium on Applied Machine Intelligence and
Informatics (SAMI). 313–318. doi:10.1109/SAMI.2012.6208979

[47] Nripsuta Ani Saxena, Wenbin Zhang, and Cyrus Shahabi. 2024. Unveiling and

mitigating bias in ride-hailing pricing for equitable policy making. AI and Ethics
(2024), 1–12.

[48] Lloyd S Shapley and Martin Shubik. 1971. The assignment game I: The core.

International Journal of game theory 1, 1 (1971), 111–130.

[49] Benjamin Shiller. 2013. First Degree Price Discrimination Using Big Data. (2013).

[50] Edward Small, Kacper Sokol, Daniel Manning, Flora D Salim, and Jeffrey Chan.

2024. Equalised odds is not equal individual odds: Post-processing for group and

individual fairness. In The 2024 ACM Conference on Fairness, Accountability, and
Transparency. 1559–1578.

[51] Seamus Somerstep, Ya’acov Ritov, and Yuekai Sun. 2024. Algorithmic Fairness in

Performative Policy Learning: Escaping the Impossibility of Group Fairness. In

The 2024 ACM Conference on Fairness, Accountability, and Transparency. 616–630.
[52] Qian Wang, Qihang Sun, Kui Ren, and Xiaohua Jia. 2016. THEMIS: Collusion-

resistant and fair pricing spectrum auction under dynamic supply. IEEE Transac-
tions on Mobile Computing 16, 7 (2016), 2051–2064.

[53] Jianyu Xu, Dan Qiao, and Yu-Xiang Wang. 2023. Doubly Fair Dynamic Pricing. In

International Conference on Artificial Intelligence and Statistics. PMLR, 9941–9975.

[54] Renzhe Xu, Xingxuan Zhang, Peng Cui, Bo Li, Zheyan Shen, and Jiazheng Xu.

2022. Regulatory instruments for fair personalized pricing. In Proceedings of the
ACM Web Conference 2022. 4–15.

[55] Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit

Niyato, and Qiang Yang. 2020. A fairness-aware incentive scheme for federated

learning. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society.
393–399.

[56] Xubo Yue, Maher Nouiehed, and Raed Al Kontar. 2023. GIFAIR-FL: A Framework

for Group and Individual Fairness in Federated Learning. INFORMS Journal on
Data Science 2, 1 (April 2023), 10–23. doi:10.1287/ijds.2022.0022

[57] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P.

Gummadi. 2017. Fairness beyond disparate treatment & disparate impact: Learn-

ing classification without disparate mistreatment. 26th International World Wide
Web Conference, WWW 2017 (2017), 1171–1180. doi:10.1145/3038912.3052660

arXiv:1610.08452

[58] Richard Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cynthia Dwork.

2013. Learning fair representations. 30th International Conference on Machine
Learning, ICML 2013 28, PART 2 (2013), 1362–1370.

[59] Yuchen Zeng, Hongxu Chen, and Kangwook Lee. 2021. Improving fairness via

federated learning. arXiv preprint arXiv:2110.15545 (2021).
[60] Aurora Zhang and Anette Hosoi. 2024. Structural Interventions and the Dynam-

ics of Inequality. In The 2024 ACM Conference on Fairness, Accountability, and
Transparency. 1014–1030.

[61] Frederik Zuiderveen Borgesius and Joost Poort. 2017. Online price discrimination

and EU data privacy law. Journal of consumer policy 40 (2017), 347–366.

1169

https://doi.org/10.1145/2090236.2090255
https://arxiv.org/abs/1104.3913
https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2302.04262
https://www.deloittedigital.com/us/en/blog-list/2018/consumer-experience-in-the-retail-renaissance--how-leading-brand.html
https://www.deloittedigital.com/us/en/blog-list/2018/consumer-experience-in-the-retail-renaissance--how-leading-brand.html
https://www.deloittedigital.com/us/en/blog-list/2018/consumer-experience-in-the-retail-renaissance--how-leading-brand.html
https://doi.org/10.1145/3593013.3594038
https://doi.org/10.1145/3593013.3594038
https://doi.org/10.1145/3442188.3445899
https://doi.org/10.4230/LIPIcs.ITCS.2017.43
https://doi.org/10.4230/LIPIcs.ITCS.2017.43
https://arxiv.org/abs/1703.00056
https://arxiv.org/abs/1703.06856
https://doi.org/10.1016/j.cose.2023.103336
https://doi.org/10.1093/oxfordhb/9780198857815.013.24
https://doi.org/10.1093/oxfordhb/9780198857815.013.24
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/323167072/chapter-ag-pdf/56886722/book_37078_section_323167072.ag.pdf
https://arxiv.org/abs/https://academic.oup.com/book/0/chapter/323167072/chapter-ag-pdf/56886722/book_37078_section_323167072.ag.pdf
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1109/SAMI.2012.6208979
https://doi.org/10.1287/ijds.2022.0022
https://doi.org/10.1145/3038912.3052660
https://arxiv.org/abs/1610.08452


FAccT ’25, June 23–26, 2025, Athens, Greece Karan, Balepur, Sundaram

A Notation
The following table serves as a reference for notation used through-

out the paper.

Table 3: Summary of Notation

Notation Description

𝐺 = (𝑉 , 𝐸) the set of agents 𝑉 connected by edges 𝐸

M the marketplace

𝑔 the one type of good being offered inM
S the exchange system

A the pricing algorithm

P the agent-matching process

J the set of agent interactions defined by the matching

process

F the fairness metric that our process aims to optimize

𝑟𝑣 the vector of consumer 𝑣 ’s properties

𝛿 the dispersion of pricing algorithm A
𝑝𝑣 the price offered to agent 𝑣 by algorithm A
𝑁 the number of agents 𝑉

𝑓𝑣 ( 𝑗𝑢𝑣) utility function 𝑓 for agent 𝑣 that takes an interaction

and price as input

𝑚 the transaction price of an interaction

𝑘 resource constraint for all agents

𝛾 the proportion of transaction price𝑚 that the system

S takes

B Impact of different group size distributions
As mentioned in the discussion, in the main body of the paper we

study the case when group sizes are roughly equal. As an additional

measure, we briefly examined a case where the group sizes are

unequal (𝑁 = 100, 𝛿 = 0.95, 𝛾 = 0.4). Specially, we consider groups

sizes sampled from a power law distribution with 𝛽 = 2. In one

instance, the group size is assigned directly proportional to the

price (i.e., the largest group has the highest price) while the other

instance is reversed (i.e., the largest group has the lowest price).

In Figure 6a, we see that in 𝜇𝐼 , while the percentage reduction

varies slightly with a lower number of trades 𝑘 , as 𝑘 increases, 𝜇𝐼 ,

is reduced by a similar amount for the skewed and equally sized

groups.

In contrast, in Figure 6b we see that 𝜇𝐺 , the mean net cost paid

by groups, is reduced much further in the scenario where the small

group is offered the lowest price. As 𝑘 gets larger, we see that

the percentage reduction is above 100%, because this small group

earns enough outsized benefit to drive the 𝜇𝐺 negative. While all

groups can benefit in this scenario, the small, privilege group has

the opportunity to earn much more and drive down the average

group price more substantially.

C Pricing algorithm details
As described in Algorithm 1, we construct a family of pricing dis-

tributions A𝛿 parameterized by 𝛿 , where 𝛿 represents the 2.25𝜎

range of possible prices. We consider 𝛿 = {0.05, 0.25, 0.5, 0.75, 0.95}
with |G| = 5. For a given pricing algorithm, we have 𝜇1, 𝜇2, ...𝜇5 for

each group and a fixed 𝜎 for all groups. For each group member in

group 𝑔 ∈ G, we sample a price from 𝑁 (𝜇𝑔, 𝜎). Here we detail for
all five pricing algorithms 𝐴𝛿 , the respective group’s mean as well

as the 𝜎 used. By construction, the price distributions produced

by these algorithms have the same mean ($50), which allows us to

specifically focus on understanding the role of dispersion within

our proposed system.

Table 4: Parameters that go intoA𝛿 for the respective pricing
algorithm

𝛿 𝜇1 𝜇2 𝜇3 𝜇4 𝜇5 𝜎

0.95 10 30 50 70 90
30

9

0.75 20 35 50 65 80
30

9

0.5 30 40 50 60 70
20

9

0.25 40 45 50 55 60
10

9

0.05 50 50 50 50 50
10

9

D Flight Pricing Simulation
D.1 Flight Price Model
We use a pricing model from prior work to produce our empirical

pricing distribution [28]. In this market, the average price was

$270.45. The work presents pricing models from various sellers in

the market, we use the model presented for “Third Party 1”. In this

work, the authors present the offsets from the base price of the

flight ticket : [$4.55, $1.46, $5.29, $3.55, $6.15, $2.91, $2.36, $5.05].
From these mean values we created nine non-overlapping groups

of consumers, where the price for each group is the offset from the

base price. We directly assign the price from one of the nine mean

values listed purely based on the group.

D.2 Consumer Utilities
The utility structure of the consumers is the same as described in the

main body of the paper. For the individual disutility, each consumer

𝑢 is assigned a truncated Normal distribution E𝑢 with varying

means (drawn from 𝑈 [0, 1]) but the same standard deviation (0.5)

where the numbers are chosen with respect to the prices from the

flight price model.

Table 5: Prices for Aflight. No variance is used for this algo-
rithm.

Group Price

𝜇1 $270.45

𝜇2 $271.91

𝜇3 $272.46

𝜇4 $273.01

𝜇5 $274.21

𝜇6 $275.42

𝜇7 $275.82

𝜇8 $276.20

𝜇9 $276.60
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(b) 𝜇𝐺

Figure 6: Impact of group size distribution on the reduction in as 𝑘 (number of allowed trades) increases. We optimize for 𝜇𝐼
and 𝜇𝐺 in the decentralized case, and set 𝛾 = 0.4, 𝛿 = 0.95. Three group size distributions are shown: one where all groups are
equally sized, one where the largest group is offered the lowest price, and where the largest group is offered the highest price.
Here the percentage reduction in 𝜇𝐼 , 𝜇𝐺 is shown compared to a no-trading situation.
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